
1 April 1998 Delphi Informant

April 1998, Volume 4, Number 4

File Notification
VB or Delphi: Which Does COM Automation Best?

Cover Art By: Doug Smith

ON THE COVER
5 File Notification � Bruce McKinney
We take it for granted. Windows applications we use every day com-
municate with each other via a set of Windows API functions. Mr
McKinney not only explains how this is done, he also presents us
with an Automation object to do the job, and compares/contrasts the
Delphi and VB approaches.

FEATURES
12 Columns & Rows
ClientDataset � Dan Miser
Mr Miser demonstrates working with the ClientDataset component,
and shows that while it doesn’t provide all the functionality of
MIDAS, it can provide a lot of the benefits in 2-tier situations.

17 Visual Programming
Setting Limits: Part I � Gary Warren King
Tired of users resizing forms, making them ridiculously large or
small? Mr King shows how to set some limits. Further, he discusses
generic solutions, and why form inheritance is not the answer.

22 DBNavigator
Interfaces � Cary Jensen, Ph.D.
They’re new and tremendously useful. In fact, they’re at the core of
why Delphi 3 makes COM development so easy. If you’re looking to
understand interface objects, let Dr Jensen explain.

28 Algorithms
Rough around the Edges � Rod Stephens
Got an important graphic that needs to look just so, yet looks so-so
because it has “the jaggies?” Antialiasing is the answer says Mr
Stephens, and he’s got the algorithm to prove it.

32 Informant Spotlight
1998 Readers Choice Awards � Chris Austria
It’s hard to believe that Delphi and Delphi Informant are three years
old, but it’s time again for you, the reader, to speak out about your
favorite Delphi-related, third-party products.

REVIEWS
37 The Tomes of Delphi 3: Win32 Core API

Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
4 Newsline
39 From the Trenches by Dan Miser
40 File | New by Alan Moore, Ph.D.

2 April 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Xceed Releases Zip Compression Library and Self-Extractor Module

SuperNova Releases Supe
Xceed Software, Inc.
announced the release of
two products, the Xceed
Zip Compression Library
3.0 and the Xceed Zip Self-
Extractor Module 1.0.

The new version of the
Xceed Zip Compression
Library provides enhanced
support for 16- and 32-bit
Windows development
environments and features
memory compression, glob-
al status reports, file renam-
ing, and creation of self-
extracting .ZIP files. Also, a
Borland C++Builder com-
ponent is added to the
VBX, OCX, and Delphi
VCLs, along with sample
applications for Microsoft
Word 97, Microsoft Access
97, and C++Builder.

The Xceed Zip Self-
rNova/Visual Concepts

Pythoness Releases PSett
Extractor Module is an
add-on module for the
Xceed Zip Compression
Library that allows develop-
ers to create customized
self-extracting .ZIP files
from within an applica-
tion. The module
enables developers to
customize the title,
introduction message,
all text and button cap-
tions, default extract
path, and default over-
write behavior. Other
features include the
ability to span disks, a
real-time status window,
and a prompt for
decryption passwords.

Xceed Software, Inc.
Price: US$199.95 each;
US$299.95 for both, if purchased
ing
together by April 30, 1998. All pur-
chases include free technical support
and a 60-day money-back guarantee.
Phone: (800) 865-2626 or
(514) 442-2626
Web Site: http://www.xceedsoft.com
Pythoness Software has
announced PSetting, persis-
tent storage components for
real-world applications.

PSetting provides basic
features such as automatic
form position storage, MRU
lists, and component prop-
erties. In addition, PSetting
offers a storage mechanism,
allowing a developer to save
generic settings. PSetting
also enables developers to
specify where to store infor-
mation, using the Windows
registry, a TStream, an
IStorage (OLE structured
storage file), or any pro-
grammer-defined location.
PSetting allows instant cor-
relation of related settings
between forms, so that only
a line or two of code is
required to update all
forms.

PSetting is available for
Delphi 2 and 3 and includes
source code.

Pythoness Software
Price: US$69
Phone: (208) 359-1540
Web Site: http://www.pythoness.com
SuperNova, Inc. announced
SuperNova/Visual Concepts, a
component assembly environ-
ment that allows organiza-
tions to combine components
written in any development
language and deploy compo-
nent-based applications across
virtually any platform.
SuperNova/Visual Concepts

is based on SuperNova’s core
virtual machine technology,
which enables the product
to incorporate components
developed for more than 20
hardware/OS platforms and
more than 25 commercial
databases. Components can
be written in any develop-
ment language that supports
ActiveX, OLE/COM, or
CORBA/IIOP, including
Delphi, Visual Basic, Java, C,
C++, PowerBuilder, or
SuperNova/Application
Developer.

The SuperNova/Visual
Concepts environment
includes a graphical compo-
nent repository that allows
developers to identify com-
ponents by language,
platform, or business func-
tionality; a drag-and-drop
application-modeling
environment; automatic
generation of interfaces
between components; a
component deployment
manager; and a component
execution broker.

SuperNova, Inc.
Price: From US$19,995
Phone: (732) 248-6667
Web Site: http://www.supernova.com

http://www.xceedsoft.com
http://www.pythoness.com
http://www.supernova.com

3 April 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

TurboPower Announces Async Professional 2.5

TurboPower Software Co.

announced Async
Professional 2.5, the com-
pany’s communications and
faxing toolkit for developers
using any version of
Borland Delphi and
Popkin Releases SA/Obje
C++Builder. Version 2.5
adds support for DTMF
tone detection, .WAV file
record and playback, and
fax detect and hand-off.

With Async Professional
2.5, developers can create
ct Architect 4
complex voice mail applica-
tions, automated help sys-
tems, fax-back systems, and
other business applications.

The new version also
includes AT-compatible
ISDN support for high-
speed communications,
support for the RS-485
communications standard,
user-defined data triggers, a
redistributable fax cover
page editor, enhanced
Caller ID support, and
revised and expanded docu-
mentation.

Async Professional ships
with full source code (writ-
ten in Delphi) and requires
no royalties.

TurboPower Software Co.
Price: US$279; registered owners of
Async Pro 2.x can upgrade for US$79;
owners of Async Pro 1.x, or Async Pro
Pascal Edition can upgrade for US$129.
Phone: (800) 333-4160
Web Site: http://www.turbopower.com
Popkin Software &
Systems, Inc. has upgraded
its System Architect family
of repository-based
client/server applications
modeling tools with
SA/Object Architect 4, offer-
ing a shared repository, cus-
tomizable features, and scal-
ability.
The SA/Object Architect 4
includes automatic genera-
tion of logical data models
from object-oriented class
models (and the reverse), so
legacy systems can be
migrated to the OO
method. SA/Object
Architect 4 generates C++,
Smalltalk, Java, CORBA
IDL, and HTML. It also
allows point-and-click gen-
eration of Delphi forms,
Visual Basic, and
PowerBuilder data windows
from the data model.

In addition, SA/Object
Architect 4 has two-way links
to Persistence Software and
Magic Software, as well as

two-way interfaces to the
Microsoft Repository and
Microsoft Visual Modeler.

Popkin Software &
Systems, Inc.
Price: First license for stand-
alone version, US$2,195; network
version (minimum of two copies),
US$2,395; discounts are available
for multiple licenses; annual sup-
port for stand-alone and network
versions, US$439 and US$479,
respectively.
Phone: (800) 732-5227 or
(212) 571-3434
Web Site: http://www.popkin.com

http://www.turbopower.com
http://www.popkin.com

4 April 1998 Delphi Informant

News
L I N E

Apr i l 1998

Borland Appoints Zack Urlocker Vice President of Marketing

Scotts Valley, CA — Borland

announced the promotion of
Zack Urlocker to Vice
President of Marketing.
Urlocker, who was previously
Vice President of Product
Management, is now respon-
sible for Borland’s worldwide
marketing activities, includ-
ing corporate marketing and
corporate communications.
Borland and Cayenne So
Support for Delphi Client

Borland Ships Translation
He reports to Borland
Chairman and CEO Delbert
W. Yocam.

Urlocker has been with
Borland for seven years.
Prior to heading product
management, he served as
director of Delphi Product
Management where he was
involved in the develop-
ment and introduction of
ftware Announce
/Server Suite

BSC Polska to Become M
Borland Products in Pola

 Tools for Delphi
Delphi. Prior to becoming
director of Delphi Product
Management, Urlocker
served as a product manager
in Borland’s languages
group. Before joining
Borland, Urlocker was the
manager of developer rela-
tions at The Whitewater
Group.

Borland also announced
the promotion of Mark de
Visser to Vice President of
Marketing Communications.
De Visser, who will now
report to Urlocker, is respon-
sible for advertising, collater-
al, creative services, and elec-
tronic marketing.
aster Distributor of
nd
Scotts Valley, CA — Borland
announced that its Delphi
Client/Server Suite is support-
ed by Cayenne Software’s
ObjectTeam 7, a component
modeling tool that is compli-
ant with version 1.0 of the
Object Management Group’s
Unified Modeling Language
(OMG UML). ObjectTeam 7
integrates with Borland’s
Delphi Client/Server Suite by
generating Delphi 2 and
Delphi 3 code, supporting the
reverse engineering and gener-
ation of large-scale, multi-tier
Delphi applications.

ObjectTeam 7 allows teams
of systems analysts and design-
ers to build object-oriented
applications. It includes editors
for OMG UML 1.0 Use Case,
Collaboration, Class,
Sequence, and State diagrams.
Support for OMG UML 1.0
allows organizations to stan-
dardize a common modeling
language for specifying,
designing, and documenting
large and complex systems.
Frankfurt, Germany —
Borland EMM (Eastern
Europe - Mediterranean -
Middle East) announced
that BSC Polska is now
Borland’s master distributor
in Poland.

BSC Polska was founded
in November 1996 to pro-
vide professional technical
services for Borland users.
Its activities include sup-
port, training, develop-
ment, and consulting. BSC
Polska is supported by
Borland’s European
Technical Team, directly
associated with Borland
Research & Development.

With this step, Borland
confirms its commitment
to its customers in Poland.
BSC Polska will use the ser-
vices of the current Borland
distribution network repre-
sented by ABC Data, MSP,
and Softpoint.

For additional informa-
tion on Borland’s presence
in Poland, and BSC ser-
vices, developers, cus-
tomers, and corporation,
visit http://www.bsc.-
com.pl.
Scotts Valley, CA —
Borland announced new
versions of two tools for
translating Delphi applica-
tions into international lan-
guages: the Delphi 3
Language Pack and the
Delphi Translation Suite
3.0. These tools provide a
way to localize Delphi
applications into Danish,
Dutch, English, French,
German, Italian, Portu-
guese, Spanish, and
Swedish.
The Delphi 3 Language
Pack includes already-translat-
ed system messages for
Delphi’s VCLs and the BDE
(Borland Database Engine), as
well as translated message
templates for Delphi forms,
dialogs boxes, and menus. It
also includes the Delphi
Language Manager, which
allows developers to switch
between languages.

The Delphi Translation
Suite 3.0 allows ISVs, VARs,
and system integrators to
deliver larger-scale applica-
tions internationally with a
thorough translation. The
suite can help translate new
or existing applications, and
includes all the functionality
of the Delphi 3 Language
Pack, plus a suite of develop-
ment tools to automate and
test the translation process
from a single code base.

Delphi 3 Language Pack is
available for US$199.95.
Delphi Translation Suite
3.0 is available for
US$2,499.95. For more
information, or to order,
call (800) 233-2444.

http://www.bsc.com.pl
http://www.bsc.com.pl

5 April 1998 Delphi Informant

On the Cover
Delphi / Visual Basic

By Bruce McKinney
File Notification
VB or Delphi: Which Does COM Automation Best?

Try this experiment: Run Windows Explorer in one window; then go to a
command-line session or another instance of Windows Explorer and delete a

file in the directory shown by the original Explorer. Watch what happens: There’s
a short pause, and then the file disappears from the first Explorer window.
How does Windows Explorer know about
a file changed by another program? The
same way your programs can know: by
using the Windows API functions
FindFirstChangeNotification,
FindNextChangeNotification, and
FindCloseChangeNotification. This article
presents an Automation object that watches
for changes in the file system using these API
functions and broadcasts the details to inter-
ested clients. (Just to make sure we’re talking
the same language, a Delphi Automation
object is what some environments call an
ActiveX EXE server.)

We’ll be discussing several parts of this prob-
lem. The easy part is using the file notifica-
tion functions. The difficult part is making
the connection between clients and server
using COM Automation. Finally, I’ll have a
little bit to say about the unusual origins of
my Notify server, which was originally written
in Visual Basic (VB).

From VB to Delphi
Without giving a complete résumé, I am the
author of an advanced VB book called Hardcore
Visual Basic [Microsoft Press, 1997]. Without
getting into a lot of criticism of a competing
product, I was disappointed in VB 5 and weary
after writing a book full of hacks to work
around limitations of the language. Without get-
ting into my personal history, my first compiler
was Turbo Pascal 1.0 — a revolutionary product
that changed the world and started me on the
road to becoming a professional programmer.
Given those facts, experimenting with
Delphi seemed like a natural next step.
When I tried it a few months ago, the lan-
guage felt like a long-lost friend, but a
friend who has been through several wars,
famines, and alien visitations since our last
meeting. There were times when I felt
daunted and confused, but not intimidated
enough to avoid a foolish mistake: I volun-
teered to write an article about translating
a program from a language I knew inti-
mately to a language I didn’t know nearly
as well as I thought.

This article is the result. It focuses on
COM, Automation, and file notification,
but we’ll take a few side trips to look at the
technical and philosophical differences
between the VB and Delphi implementa-
tions of COM. I’ll give you an early hint.
We’re not going to find that Delphi is good
and VB is bad, or vice versa. They just have
very different COM philosophies.

The Client Side of File Notification
The File Notification Server (Notify.exe)
encapsulates file change notification in an
Automation server that you can use from
any program. You can see how it works in
the sample program (available for down-
load; see end of article for details), Test
Notify (TNotify.exe). The sample simply
deletes, renames, creates, and saves files in
the \Temp directory. The Notify server
detects these changes and sends events
reporting them back to the client.

On the Cover
Figure 1 shows the sample
with a list of files at the top
and a list of file events at the
bottom. The buttons to allow
changing the files in the test
program are a testing conve-
nience. Any changes made to
files in the \Temp directory
will show up in the event list.
You can test this by modify-
ing files with Windows
Explorer while the sample is
running. You may also want
to run multiple copies of the
sample to test whether the
server can handle multiple
clients. If you’re really ambi-

tious, you could write a similar sample client for the Delphi
server in VB, or you could write a Delphi client for the VB ver-
sion provided with my book.

In our first view of the problem, we’re going to think of the serv-
er as a magical black box. By looking at how the client connects,
we can see what the server does. Later, we’ll see how it works.

After the Notify server has been run at least once, its type
library is listed in the system registry. To use its classes and
interfaces, we would normally read their definitions using the
Import Type Library command from the Project menu. This
would bring up a dialog box where we would select the Notify
server from a list of registered type libraries. The result would
be the creation of a new unit called Notify_TLB located some-
where deep in the \Program Files\Borland directory. But we’re
not going to follow the normal procedure, which is based on
the assumption that the client developer may not have access
to the source code of the server. In this case, we are developing
both the client and the server, and part of the process of build-
ing the type library for the server is to create a unit called
Notify_TLB in the current directory. Since this unit will be
identical to the one we would create by importing the type
library, we’ll use it instead (so that the code supplied with the
article can be complete).

We’ll see how the file is created shortly. For now, we’re inter-
ested in the contents of the Notify_TLB unit. The key defini-
tions are a class representing the Notify server, and an inter-
face that will be used to create notification events in the
client. The class appears as TNotify in the server, but it is
imported as a separate interface INotify and CoClass
CoNotify. The interface looks like this:

INotify = interface(IDispatch)
['{ 64624092-5B32-11D1-8193-000000000000 }']
function Connect(const notifier: INotifier; const

sDir: WideString; iMode: Integer; fSubTree: WordBool):

Integer; safecall;
procedure Disconnect(hNotify: Integer); safecall;

end;

The CoClass provides Create and CreateRemote methods that
you use to hook up the interface. The first thing the

Figure 1: The sample application
at run time.
6 April 1998 Delphi Informant
FormCreate procedure of the test form does is to hook up the
notify variable (type INotify) using the CoClass:

notify : INotify;

...

notify := CoNotify.Create;

This is the first big difference between Delphi and VB. In VB
the class used in the client is exactly the same as the class
defined in the server. You have to add the type library of the
server to your project, but then you simply declare an object
variable of the class type:

Private notify As CNotify

...

Set notify = New CNotify

You don’t have to initialize the object with CoClass and
use it with an interface. Of course, VB is actually doing
the same thing under the surface, but it hides the details.
VB can do this because its primary purpose as a language
is to wrap COM. Delphi is a general purpose language
that supports COM as an optional feature. That’s why
you’ll generally find that if COM doesn’t support a feature
(such as constructors or inheritance), VB doesn’t support it
either. Delphi classes aren’t COM classes unless you specify
the necessary COM support. VB classes are always COM
classes, whether you need COM or not. With VB you can
only do the most important COM operations that VB sup-
ports directly. With Delphi, you can do any COM opera-
tion, no matter how obscure. Of course, you can make
Delphi COM operations easier by using standard COM
classes and interfaces, and by using the Type Library
Editor and other automated features.

Connecting to the Server
The notify variable represents the EXE server that will use
Win32 file notification API functions to watch for any
changes to files or directories. The client has to tell the server
which directories to watch and what to watch for by calling
the Connect and Disconnect methods. This code, in the
FormCreate method, disconnects the old directory (if there is
one) and connects a new one:

with notify do begin
// Watch for directory changes.
hNotifyDir := Connect(notifier, sTemp,

FILE_NOTIFY_CHANGE_DIR_NAME, False);

// Watch for name changes (delete, rename, create).
hNotifyFile := Connect(notifier, sTemp,

FILE_NOTIFY_CHANGE_FILE_NAME, False);

// Watch modifications of file contents.
hNotifyChange := Connect(notifier, sTemp,

FILE_NOTIFY_CHANGE_LAST_WRITE, False);

end;

The first parameter of the Connect method is an INotifier
variable (which I’ll get to in a minute). The second parame-
ter is the directory to be watched, in this case the \Temp
directory. You can check the code to see how I got it from
the GetEnvironmentVariable API function. The third para-
meter tells what kind of changes to look for. The
FILE_NOTIFY... constants are defined in the Windows

On the Cover
unit as bitfields. You could combine several of them with
the plus operator, but I have made three different kinds of
connections so that when the notifications come back, I’ll
be able to tell what kind of event happened. The last
Boolean parameter indicates whether to check child directo-
ries. Windows 95 doesn’t support True, so you should sup-
ply False unless your program will run only on Windows
NT. The Connect method returns a notification handle,
which you must save to pass to the Disconnect method.

The first connection looks for changes to directories, includ-
ing any that have been created, removed, or renamed. The
next connection looks for any files whose names have
changed in the current directory. Deleting a file or creating a
new file obviously changes the file name. The third connec-
tion looks for files that have been modified. For example, if
you modify a text file in the \Temp directory with Notepad,
you’ll get a notification. The notifications just tell you that a
change has occurred. They don’t say what file or directory
changed. In most programs you can just update your view of
the directory, but if you really need to know exactly what file
or directory changed, you can usually figure it out by check-
ing file dates. Windows NT supports identifying files changes
with the ReadDirectoryChanges API, but that’s beyond the
scope of this article.

Getting Events from the Server
Now that we’ve told the server what we want it to watch, how
will we get back the information? The obvious answer is
through events. When the server receives a notification from
the operating system, it should create an event to report the
results. Clients hooked up to the server should receive those
events. The problem is that the normal COM event mecha-
nism doesn’t work automatically in clients of Automation
objects the way it does in clients of ActiveX controls. You can
teach your clients how to receive standard events using
Delphi’s TConnectionPoint class, but I won’t get into that. For
this particular problem I prefer a simpler method of receiving
events: interface callbacks.

An interface defined by the server provides a common
method of communication for the clients. The clients get
the interface from the type library and implement it to do
whatever client-specific tasks they want. They pass an inter-
face pointer to the server, which uses it to call back methods
in the client. The server doesn’t know or care how the inter-
face is implemented, just that it provides a standard way of
passing back data. Here’s the INotifier interface defined by
the Notify server:

INotifier = interface(IDispatch)
['{ 64624094-5B32-11D1-8193-000000000000 }']
procedure Change(const sDir: WideString; iMode: Integer;

fSubTree: WordBool); safecall;
end;

The interface has only one method, Change. It is designed to
pass back some of the same data passed in the Connection
method so that a client with several connections can deter-
mine which one is coming back.
7 April 1998 Delphi Informant
In Delphi you implement an interface by deriving a new
class from it. The new class should also inherit from one of
the library classes that knows how to handle interfaces.
The most common of these is TInterfacedObject, but when
dealing with Automation interfaces (those derived from
IDispatch) you usually have to use a descendant called
TAutoIntfObject. So the class that we will implement looks
like this:

TNotifier = class(TAutoIntfObject, INotifier)
procedure Change(const sDir: WideString; iMode: Integer;

fSubTree: WordBool); safecall;
end;

The Change procedure can be implemented to do whatever
the client needs to do. The sample program simply sends a
string describing the data to a listbox:

procedure TNotifier.Change(const sDir: WideString;

iMode: Integer; SubTree: WordBool); safecall;
var
s : string;

begin
case iMode of
FILE_NOTIFY_CHANGE_DIR_NAME:

s := 'Directory name change of ' + sDir;

FILE_NOTIFY_CHANGE_FILE_NAME:

s := 'File name change in ' + sDir;

FILE_NOTIFY_CHANGE_LAST_WRITE:

s := 'File contents change in ' + sDir;

end;
TestNotify.lstMessage.Items.Add(s);

end;

For this implementation to be called by the server, an INotifier
variable must be declared, constructed, and passed as the first
parameter of the Connect method (as we saw earlier). The con-
struction step is the difficult one, due to negligent documenta-
tion of the TAutoIntfObject.Create constructor. The Help file
shows the following signature, but fails to mention what the
two parameters mean:

constructor Create(const TypeLib: ITypeLib;

const DispIntf: TGUID);

After many hours of research, I finally got the answers from pro-
grammers on one of the Borland newsgroups (thanks Reggie
Chen and Darren Clark). The TypeLib parameter must be an
ITypeLib variable generated by the LoadRegTypeLib API function
based on the library GUID from the imported type library. The
DispIntf parameter must be the interface being created:

hr := LoadRegTypeLib(LIBID_Notify, 1, 0, 0, typelib);

notifier := TNotifier.Create(typelib, INotifier);

// Handle any construction failure.

Although the signature for the constructor indicates the
DispIntf parameter is a TGUID, Delphi actually accepts the
interface name and automatically converts it to a GUID.

This is a complicated mess by VB standards. Implementing
an interface is as simple as declaring it with the Implements
keyword:

Implements INotifier

On the Cover

phi 3’s Type Library Editor.
VB automatically creates empty procedures for
the methods and properties defined by the
interface:

Private Sub IFileNotifier_Change(sDir As String, _

IMode As Long, fSubTree As Boolean)

' Implementation code goes here.

End Sub

You just fill in the blanks. So from the client
side, there’s not much doubt that VB has a sim-
pler, more intuitive syntax than Delphi. The win-
ner isn’t as clear on the server side.

The Server Side of File Notification
The File Notification Server is a slow EXE server,
not a fast DLL server. Why? Because a DLL serv-
er would be too efficient. Performance isn’t really
an issue with file notification. The more impor-
tant issue is making sure the search for notifica-
tions doesn’t slow down normal operation of the clients. The
best way to make sure it doesn’t is to put notification detec-
tion in a separate thread, and the easiest way to get it into a
separate thread is to put it in a separate EXE file.

This was the only reasonable option in the original VB version,
but Delphi opens up more possibilities, including separate
threads to handle file notification inside a DLL server. Still, I’m
not sure that would really be a better system. With a DLL you’d
have a separate copy of the server in memory for each client.
With an EXE, you have only one program in memory. Further-
more, writing multi-threaded ActiveX servers requires a knowl-
edge of threading models far beyond the scope of this article.

When writing an Automation object in VB, you can just plunge
in and start writing code. In Delphi, it’s better to follow a
sequence of steps that lets wizards write a code shell for you. As a
bonus, this process forces you to think carefully about the design.

The first step is to create an empty application by selecting
New Application from the File menu. Delphi creates the appli-
cation shell, including a startup form you can discard, using
the Project Manager. This server will have no user interface,
so it has no need for a form. Next choose New from the File

menu, press the ActiveX tab on the resulting dialog box, and
select Automation Object from the list of application types.
This starts the Automation Object Wizard, which asks you
for a class name and an instancing mode for the object. Name
the class Notify; the wizard will create TNotify, INotify,
CoNotify, and other variations where appropriate. Accept the
default instancing mode, multiple, to allow more than one
client to connect to the same server. At this point I saved all
the files, naming the project file Notify (so the server will be
named Notify.exe) and the Automation unit NotifySvr.

Into the Type Library Editor
The next step is to open the Type Library Editor and start
defining the classes and interfaces the Automation object will
export. You’ve already seen a client’s side view of the resulting
class and interface. Figure 2 shows the same thing in the Type

Figure 2: Del
8 April 1998 Delphi Informant
Library Editor. It takes the form of a hierarchy with the
library at the top level. The second level has interfaces,
dispinterfaces, CoClasses, and enums (we’ll ignore enums and
dispinterfaces). The third level has methods and properties
inside the interfaces.

When you first start the Type Library Editor, the Automation
Object Wizard has already created the Notify CoClass and the
INotify interface. You just need to add the Connect and
Disconnect methods to INotify by clicking the Method button
and typing in the correct method names. The Type Library
Editor isn’t the smartest wizard you’ll ever encounter. It will
always give you procedures with no arguments when you press
the Method button. You must add the parameters and change
procedures to functions where appropriate. If I had designed the
Type Library Editor, it would have a fourth level where GUI
doodads would help you add valid parameters and return types.
Delphi’s editor allows you to type any definition, but then gen-
erates errors if your entry doesn’t follow the Automation rules.

The Automation Object Wizard knows about the TNotify
class, but it has no idea about the INotifier interface. You must
add it in the Type Library Editor by pressing the Interface but-
ton, naming the interface, and adding the Change method.

If you click on various parts of the type library hierarchy, you’ll
see that the Type Library Editor has checkboxes for flags and
fields for text and numeric data. I accepted the defaults for all
these values except the Help String fields. It’s important to add
descriptive help strings because many users will examine your
Automation objects in object browsers. Of course, you should
also provide a help file with complete documentation. In fact, a
really smart Type Library Editor would have additional fields
where you could type in help topics instead of help contexts. It
would automatically generate the help file at the same time as
the type library. Delphi doesn’t have these features, and that’s
my excuse for not supplying a help file with the Notify server.

Once you have entered all the desired values in the Type
Library Editor, press the Refresh button to generate all the

On the Cover

function TNotify.Connect(const notifier: INotifier;

const sDir: WideString; iMode: Integer;

fSubTree: WordBool): Integer;

var
i, h, e : Integer;

begin
Result := -1; // Assume fail.
fConnected := True; // At least one connection.
// Find blank handle space.
for i := 0 to cLastNotify do
if ahNotify[i] = -1 then

begin
// Set up notification.
h := FindFirstChangeNotification(

PChar(String(sDir)), fSubTree, iMode);

if h = -1 then
begin
e := GetLastError;

if e <> ERROR_NOT_SUPPORTED then
// Notification not supported on remote disks.
RaiseError(errRemoteNotSupported)

else
// Unknown error.
RaiseError(errInvalidArgument);

end;
// Store information.
ahNotify[i] := h;

aconNotify[i].notifier := notifier;

aconNotify[i].sDir := sDir;

aconNotify[i].iMode := iMode;

aconNotify[i].fSubTree := fSubTree;

Result := h;

Exit;

end;
// If we didn't exit, we're out of array space.
RaiseError(errTooManyNotifications);

end;

Figure 3: The Connect method.
necessary code in the Notify and Notify_TLB units. Don’t
mess with the contents of the Notify_TLB file. This is
essentially the same file that the Import Type Library com-
mand will create in client programs, so you don’t want it to
change. The Type Library Editor will also create the TNotify
class in the NotifySvr Unit. The contents of this class are
the same as the INotify class shown earlier, but the class dec-
laration is interesting:

TNotify = class(TAutoObject, INotify)

The class is inherited from TAutoObject, which implements
IDispatch and a bunch of other COM stuff that you don’t
really want to know about — except that it’s this implemen-
tation that needs the INotifyDisp dispinterface, the CoClass
constructors, and other details that you will see if you study
the contents of the Notify_TLB unit.

Implementation at Last
At last we’ve finished the description of what the Notify
server looks like and can get down to how it works. Here’s
the short version. The Connect method stores all the data
passed to it in arrays. The Disconnect method removes the
array data for a specified stored connection. Meanwhile, the
main dispatch loop periodically calls the system to check for
file changes in the watched directories. When it receives a
notification, it looks up the corresponding array data and
uses the found interface object to pass the rest of the data
back to the client.

Like most algorithms, this one is built on its data structures.
The data for each connection is stored in the following record:

TConnection = record
sDir : WideString;

iMode : Integer;

fSubTree : WordBool;

notifier : INotifier;

end;

Notice this is exactly the same data passed by the Connect
method. We’ll need an array to store these records, and a par-
allel array to store the handles for notification objects:

aconNotify : array[0..cLastNotify] of TConnection;

ahNotify: array[0..cLastNotify] of Integer =

(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1, -1);

You might wonder why I didn’t add hNotify as a field of the
TConnection record and store all the data in a single array.
Two reasons. We have to initialize all those handles to -1, and
it’s easier to do in a separate array. But more importantly, the
API function that examines those handles needs them all
lined up in an array with nothing in between. By the way,
don’t take the ability to initialize arrays for granted. This sim-
ple pleasure is denied to VB programmers.

I use arrays with a fixed size because it’s easier, but you could
probably modify the program to use dynamic arrays with
9 April 1998 Delphi Informant
enough extra code. I don’t foresee the Notify server handling
more than 28 connection requests at a time, but if you can,
it’s easy to increase the size of the arrays by changing the
cLastNotify constant.

Figure 3 shows how the Connect method initializes the
data for each notification request. It looks for a blank
slot in the array. When it finds one, it initializes the slot
with a file notification handle obtained by calling the
FindFirstChangeNotification API function. If everything
goes well, Connect stores the handle returned by the API
function and the data passed in as parameters in the
appropriate arrays. I’ll let you look through the code sup-
plied on the Informant Web site to see how Disconnect
undoes the work done by Connect.

There are additional points I’d like to make about the con-
nect code. First, notice the double cast on the directory string
passed to FindFirstChangeNotification. You may have noticed
that the directory string, sDir, is a WideString rather than a
string, and the f SubTree flag is a WordBool instead of a
Boolean. This causes some inconvenience, but string and
Boolean are not among the official recognized Automation
types. Blame it on VB, which was the source of most of the
Automation standards. Connect receives a WideString, but
FindFirstChangeNotification (like most API string functions)
expects a PChar. You can’t cast directly from a WideString to
a PChar, but you can cast from a WideString to a string, and
from a string to a PChar.

On the Cover

procedure WaitForNotify;

var
f : LongBool;

iStat : Integer;

begin
repeat

// Wait 100 milliseconds for notification.
iStat := WaitForMultipleObjects(Count, @ahNotify,

False, 200);

if iStat = WAIT_TIMEOUT then
// Timed out with nothing happening.
Application.ProcessMessages

else if (iStat >= 0) and (iStat <= Count) then
begin

// Ignore errors from client; that's their problem.
try

// Call client object with information.
with aconNotify[iStat] do

notifier.Change(sDir, iMode, fSubTree);

finally
// Wait for next notification.
f := FindNextChangeNotification(ahNotify[iStat]);

Assert(f, 'FindNextChangeNotification failed');

end;
end

else if iStat = WAIT_FAILED then
// Indicates no notification requests.
Application.ProcessMessages;

// Done when server is connected and object count is 0.
until fConnected and (ComServer.ObjectCount = 0);

end;

Figure 4: The WaitForNotify procedure.
The second point is that exceptions in Automation servers
must be raised through the EOleException class. These excep-
tions are raised in the server, but received in the client. We
don’t want an invalid argument from one client bringing
down the server and thus terminating a valid connection with
another client. Here’s the RaiseError procedure I use to gener-
ate errors in the required format:

procedure RaiseError(iErr : Integer);

begin
raise EOleException.Create(aerr[iErr], 5550 + iErr,

'Notify, '', 0);

end;

I have constants for each of the errors that the Notify server
can raise. These constants are indexes into an array of error
messages. My RaiseError procedure uses the constants and the
array to generate an error message and an error number that I
hope won’t conflict with errors from other COM components
being used by the client. If there is a conflict, the server name
passed in the third parameter can be used to distinguish the
error codes. The fourth and fifth parameters are the HelpFile
and HelpContext, which I didn’t have the decency to create for
this server.

Waiting for Events, but Where?
The important point about the Connect method is that
FindFirstChangeNotification asks the Windows kernel to
watch for certain file events. All we need to do is wait for the
event to happen. But wait where? Who will the kernel notify
when it gets a file event? It can’t wait in the Connect event
(which must return to the client), but where else can it go? I
had a lot of trouble with this in VB, so I wasn’t surprised
when I encountered similar difficulties in Delphi. Once I fig-
ured it out, however, the Delphi solution proved to be much
cleaner than my VB hacks.

Remember that earlier we deleted the form automatically
added by Delphi because the server has no user interface.
That leaves the following code in the project file:

begin
Application.Initialize;

Application.Run;

end.

Application.Run starts the program’s main window message
loop, which dispatches messages to the program’s windows.
But this program has no windows. It won’t receive many mes-
sages. It doesn’t need a message loop. What it needs instead is
a loop to wait for notifications. So I replaced Application.Run
with my own loop:

begin
Application.Initialize;

NotifySvr.WaitForNotify;

end.

This is one trick you’ll never get away with in VB. Since VB
wouldn’t let me mess with its message loop, I had to trick it
by starting a Windows timer that immediately killed itself
10 April 1998 Delphi Informant
and launched my message loop. A language that tries to antic-
ipate your every need is great as long as it guesses correctly,
but when it guesses wrong, you’re in trouble. One of Delphi’s
strengths is that while it does guess about what you want, it
lets you override the default if it guesses wrong.

With the WaitForNotify procedure, we’ve finally gotten to the
heart of the Notify server. Figure 4 shows the code. It’s just a
loop that starts with a call to WaitForMultipleObjects, which
waits for what Windows calls an object. A Win32 object can
be a process, a thread, a mutex, an event, a semaphore, con-
sole input, or the one we’re interested in, a change notifica-
tion. Whatever you’re waiting on, you must put its handles in
a contiguous array and pass the number of objects, followed
by the address of the first object. You must also indicate
whether you want to wait until all objects have returned or
wait only for the first one. In this case, you pass False to wait
for the first file notification object. Finally, you pass the time-
out period, 200 milliseconds.

When I say that WaitForMultipleObjects waits, I mean that
literally. As soon as the server hits WaitForMultipleObjects, it
stops dead. The server is no longer running. All the other
programs in the system get all the cycles, and you get noth-
ing. On most iterations through the loop, no notification
will come through and the wait will time out. In this case,
Application.ProcessMessages will be called to handle any wait-
ing messages. When a file notification does come through,
WaitForMultipleObjects returns its index into the handle
array. The else if block that tests for valid indexes handles
the notifications by using the stored client interface object to
call the client’s Change method. Notice that this call is pro-
tected in a try block so that one bad client can’t bring the

On the Cover
server down and stop other clients. After the callback,
FindNextChangeNotification is called to wait for the next
notification. Incidentally, Count is a function that counts the
valid handles in the array by looping until it finds a handle
with value -1.

The final issue is how you get out of the notification loop.
You don’t want to loop forever, thus keeping the server run-
ning, even if there are no notification connections. You want
to keep track of how many client objects there are, and when
the count reaches zero, terminate the loop (and thus the serv-
er). But the count is always zero when the server first starts,
and you don’t want to terminate then. So you watch a flag
that is False when the server first starts, but becomes True as
soon as the first connection is made.

But how do you keep track of the objects? The solution of
testing the ComServer.ObjectCount property looks easy in
the source, but you’re not seeing how long it took me to
figure that out. In the VB version, I kept a reference count
of objects by incrementing a count when an object was cre-
ated and decrementing it when the object was destroyed.
VB classes have Class_Initialize and Class_Terminate
events where you can count objects. Delphi classes have no
such mechanism, and the obvious solution of giving your
classes constructors and destructors doesn’t work because
Automation classes are derived from TAutoObject, which
has a static constructor. Fortunately the TComServer class
and its automatically-created global variable, ComServer, do
the reference counting for you (and provide several other
important services).

One last issue. Why would you care whether the server ter-
minated when its object count is zero before the first con-
nection? Normally, the server is started automatically when
the first client connects to it. At that point, it has one con-
nection, so it won’t terminate on startup. The only time it
would is if you started it from a command line or from
Windows Explorer — something you wouldn’t have any rea-
son to do. It turns out there is one important situation when
you need to start the server first: during debugging.

Because the Delphi documentation doesn’t mention how to
debug Automation objects, I’ll explain it here. You have to
run two copies of Delphi. Put the server in one and a client
in the other. Run the server first. If you run the client first,
a server will be loaded, but it won’t be under the debugger
and you won’t be able to step through it. If you run the
server first and then the client, the client code that activates
the server will automatically switch to the server copy of
Delphi when you hit a breakpoint in the server code.

Which Does Automation Best?
There’s no clear winner when you compare Automation and
other COM tasks in VB and Delphi. VB makes it easier to
create and use simple Automation objects. It does this by
hiding the irrelevant details. But once you move to more
complex Automation problems, you may find that those
details aren’t as irrelevant as they first seemed; you may want
11 April 1998 Delphi Informant
to see and control them. If you’re clever enough, you can
usually hack your way around VB limitations, but in Delphi
you can usually solve the problems without arcane hacks.

This dichotomy continues as you go further in advanced pro-
gramming. For example, VB has automatic multi-threading
models that can assign each new object created to a different
thread. Delphi doesn’t have anything comparable, but it gives
you a fighting chance to design your own multi-threading
schemes where you have complete control over what happens
in each thread. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\APR\DI9804BK.

Bruce McKinney is the author of Hardcore Visual Basic [Microsoft Press, 1997]. He
is currently learning new languages, experimenting with new technology, and trying
to recover from a long career at Microsoft. You can reach him at
brucem@pobox.com or visit his Web site at http://www.pobox.com/HardcoreVB.

http://www.pobox.com/HardcoreVB

12 April 1998 Delphi Informant

Columns & Rows
Delphi 3 / MIDAS

By Dan Miser

Figure 1: Diagram of 3-tier
ClientDataset
MIDAS on the Cheap

Delphi 3 has brought the concept of distributed computing to every pro-
grammer’s desktop. With MIDAS, a developer can quickly and easily build,

test, and deploy a multi-tier application. However, not every problem requires a
multi-tier solution. Furthermore, MIDAS comes with a retail price tag of $5,000
per server for deployment. While this price is much cheaper than any other
alternative on the market, it may still be cost-prohibitive for smaller program-
ming shops. This article will explore how to take advantage of Borland’s multi-
tier technologies in 2-tier applications.

Delphi 3 VCL Enhancements
A new component, ClientDataset, was creat-
ed for Delphi 3. This component descends
directly from TDataset, and as such, is a data-
base-independent component. Furthermore,
all the data of a ClientDataset is stored in
memory, and therefore is very fast.

Another modification to Delphi 3 is that all
DBDataset components have a Provider prop-
erty. This property is of type IProvider, which
is a COM interface. The IProvider interface
models a standard producer/consumer relation-
(client, server app, DBMS) vs. 2-tier (client, DBMS).
ship. The producer is a DBDataset compo-
nent, while the consumer will typically be the
ClientDataset. In this way, data can flow to
and from producer and consumer with mini-
mal intervention on the programmer’s part.

Figure 1 shows the communication between
all the components related to database devel-
opment in an n-tier application. Machine A
contains all the components necessary to
communicate directly with the DBMS, and as
such, is categorized as a 2-tier application. If
you introduce Machine B to communicate to
the DBMS on Machine A’s behalf, you have a
3-tier application. You are only using MIDAS
if the ClientDataset gets its data from a
DBDataset on a separate machine. Another
way to check if you need a MIDAS license
would be if you still need to deploy and
install the BDE to make your client applica-
tion run. If you need the BDE on your client
machine, you probably don’t need MIDAS.

Let’s walk through a high-level overview of
ClientDataset use in a 3-tier application:

Create a server application.
On a Remote DataModule, export the
IProvider interfaces of the DBDataset
components.

e 2: Diagram of Provider interaction.

Columns & Rows
Create a client application.
Place a RemoteServer component on the client,
attaching to the server application.
Place a ClientDataset component on the client.
Attach the RemoteServer property to the
RemoteServer. Assign the ProviderName property
to the provider exported from the server applica-
tion.

The act of setting the ProviderName property also sets the
Provider property. Remember that the Provider property is of
type IProvider, and the IProvider interface controls the flow of
data (see Figure 2). Therefore, the ClientDataset does not point
directly to the database table, but rather, points to the Provider
property of the DBDataset assigned to the ClientDataset.

By contrast, using the ClientDataset component in a 2-tier
application does not require you to create a server applica-
tion from which you will receive data. However, since the
ClientDataset must get its data from somewhere, we will
link to a DBDataset on the same tier. By doing this, you will
not be required to purchase a MIDAS license, but you will
get the added benefits of using ClientDataset technology.
You don’t set the RemoteServer or ProviderName properties of
the ClientDataset; those properties are only used when
accessing the component in a 3-tier application.

We’ve seen how to assign the data to the ClientDataset in a
3-tier application. How do we accomplish this in a 2-tier
application? There are four ways to accomplish this:

Run-time assignment of IProvider
Run-time assignment of data
Design-time assignment of data
Design-time assignment of IProvider

Assigning IProvider
At run time, you can assign the Provider property in code. This
can be as simple as the following statement, found in
FormCreate:

ClientDataset1.Provider := Table1.Provider;

A very important point to remember is that if you use this
method of IProvider assignment, you must add the unit
BdeProv to the uses clause. If you don’t, you will receive the
error message “No provider available” when running the
application.

We can also assign the data directly from the DBDataset to
the ClientDataset at run time with the following statement:

ClientDataset1.Data := Table1.Provider.Data;

Delphi can also bind a ClientDataset to a DBDataset at design
time by selecting the Assign Local Data command from the con-
text menu of the ClientDataset component. Then, you specify
with which DBDataset component this ClientDataset should
communicate, and the data is brought to the ClientDataset. A
word of caution: If you were to save the file in this state and

Figur
13 April 1998 Delphi Informant
compare the size of the DFM file to the size before executing
this command, you would notice an increase in the DFM size.
This is because Delphi has stored all the physical table data
associated with the DBDataset in the DFM. Delphi will only
stream this data to the DFM if the ClientDataset is Active. You
can also trim this space by executing the Clear Data command
on the ClientDataset context menu.

Lastly, you can use the component provided here to tie the
Provider properties together at design time. (In the Delphi
3.02 update, functionality was added to the ClientDataset
that would allow the design-time assignment of IProvider if
you leave the RemoteServer property blank. The component
presented here can still be used for those with Delphi 3.0
or Delphi 3.01). This component publishes a DataProvider
property where you can assign a component that exposes
the IProvider interface, such as Table, Query, and Provider.
When you set this property, a link between the Provider
properties of the ClientDataset and the specified compo-
nent will be created.

By using this component, you will have full access to the
table to which the ClientDataset is indirectly connected. This
means that you can add fields from the table and create cal-
culated fields. Note that the IProvider interface will not send
calculated fields across from the DBDataset to the
ClientDataset. If you want calculated fields for a
ClientDataset, you must create them on the ClientDataset.

The big difference between using DBDataset compo-
nents and ClientDataset is that when you are using
ClientDataset, you are using the IProvider interface to
broker your requests for data to the underlying
DBDataset component. This means that you will be
manipulating the properties, methods, events, and fields
of the ClientDataset component, not the DBDataset
component. Think of the DBDataset component as a sep-
arate application that can’t be manipulated directly by you
with code.

Advantages of Using ClientDataset in 2-tier Applications
Using the ClientDataset component will dramatically reduce
the network traffic in several instances:

Reading an entire table
Static lookup tables
Sorting a table

In addition, you can control the number of records retrieved
at one time via the PacketRecords property, just as in a multi-
tier application.

Columns & Rows
Briefcase Model
ClientDataset has the ability to read and write its contents
to local files. This is accomplished by using the
LoadFromFile and SaveToFile methods. These methods
are very powerful; in addition to storing the metadata asso-
ciated with a table, they also store the data and the change
log for that table. This means you can retrieve data from
the database, edit the data, and save the data to a local
CDS file. Later, when you are fully disconnected from
the database, you can load the data from that CDS file and
still have the ability to undo changes using the standard
ClientDataset methods. Another great use for this is
lookup tables.

Lookup
Typically, lookup tables are relatively small, and rarely
change. If they rarely change, they don’t need to take up
bandwidth to send this static data across the network every
time a client application starts. Instead, we can save the
data locally in ClientDataset format. If you implement
this method with dynamic tables, however, you need to
implement some mechanism to let your application know
when the lookup table has changed on the database server.
This way, your application can download the latest version
of the lookup table into the local cache.

Since the data is stored in a component derived from
TDataset, we can use this component in a lookup capacity.
For example, using a DBLookupComboBox component
requires a DataSource and a ListSource. Until now, this
ListSource needed to attach itself to the database server.
This would tie up precious resources, and require more
network traffic. With the ClientDataset method, we can
store the data locally, and let the user look up the data
from the data stored on the client. See the sample project
Lookup.dpr in this month’s .ZIP file (available for down-
load; see end of article for details) for an example of how
this can be put to use.

Indexing ClientDataset
If you want to sort the result set in ClientDataset, you can
use the IndexFieldNames property, just as you would with
the Table and Query components. In addition, the
AddIndex and DeleteIndex methods are supplied to give you
complete control over indexing of a ClientDataset. For
example, using these methods, you can control whether an
index is ascending or descending.

Since the ClientDataset uses the data stored on the local
machine, there will be no need to ask the database server to
re-run a query to sort on a different field. The benefits of
this method are many: reduced network traffic, incredibly
fast sort times, and the ability to sort on calculated fields.

To take advantage of calculated field sorting, you must spec-
ify the FieldKind of the calculated field as fkInternalCalc.
However, you should only specify that a field is internally
calculated if you plan to filter or sort on it, because marking
this field as internally calculated will cause the
14 April 1998 Delphi Informant
ClientDataset to store the field in memory just like a regu-
lar field. If you don’t need the added capabilities for this cal-
culated field, continue to identify this field as a calculated
field, and the values will be derived only when necessary.

You can define which type of calculated field this is at design
time or at run time. At design time, you can add a new calculat-
ed field for the ClientDataset just as you have always done with
DBDataset components. Invoke the Fields Editor by double-
clicking on the ClientDataset; then right-click to display its
context menu, and select New field. When the New Field dialog
box appears, you can select either Calculated or InternalCalc to
set the TField.FieldKind. You can also change the field type at
design time by using the Object Inspector to change the value
of the FieldKind property from fkCalculated to fkInternalCalc.
Finally, to modify this attribute at run time, simply assign the
property the value of fkInternalCalc in code after you have creat-
ed the corresponding TField. Failure to set this property correct-
ly will result in a “Field out of Range” error when you try to
sort on the field. See the example CDSIndex project for a
demonstration of this technique.

Cached Updates
All the preceding uses of ClientDataset are geared to mimic the
use of local, or in-memory, tables. The final example presented
here will show how to use the ClientDataset to greatly enhance
cached update logic. According to Chuck Jazdzewski, the prin-
cipal architect of Delphi, ClientDataset will be the official way
to handle cached updates in the future.

Cached updates were introduced in Delphi 2 and gave
developers another way to present and edit data in a
multi-user application. Using cached updates reduced net-
work traffic, but introduced the problem of data concur-
rency when trying to post the data stored on the client
machine back to the database server. (For more informa-
tion on using cached updates, see Cary Jensen’s articles in
the May, June, and July 1997 issues of Delphi Informant.)

The implementation of cached updates did have some
problems, however. Some of the shortcomings of the
CachedUpdate model are:
1) Using master/detail queries, you cannot cache detail

records from different master records.
2) Inserting records in detail tables is not possible without

changes to the VCL.
3) When using joined tables, you must use multiple

TUpdateSQL and OnUpdateRecord events.

Delphi 3.01 corrected some of the problems associated with
numbers 1 and 2 above; however, there is still one major lim-
itation to using cached updates. Due to the way cached
updates are implemented, you must apply the updates any
time you move from a master record. This effectively means
that your transactions and updates must occur on one batch
of master/detail records. This may suit your needs, and, if it
does, you can use the code written by Mark Edington of
Borland (see Figure 3; attach the code to the BeforeClose event
of the detail table).

procedure TForm1.DetailBeforeClose(DataSet: TDataSet);

begin
if Master.UpdatesPending or Detail.UpdatesPending then

if Master.UpdateStatus = usInserted then
Database1.ApplyUpdates([Master, Detail])

else
Database1.ApplyUpdates([Detail, Master])

end;

Figure 3: Automatic ApplyUpdates when using CachedUpdates.

procedure TForm1.btnApplyClick(Sender: TObject);

var
MasterVar, DetailVar: OleVariant;

begin
cdsMaster.CheckBrowseMode;

cdsDetail.CheckBrowseMode;

{ Setup the variant with the changes (or NULL if
there are none). }

if cdsMaster.ChangeCount > 0 then
MasterVar := cdsMaster.Delta

else
MasterVar := NULL;

if cdsDetail.ChangeCount > 0 then
DetailVar := cdsDetail.Delta

else
DetailVar := NULL;

{ Wrap updates in a transaction; if any step creates an
error, raise an exception and Rollback the transaction.
This would normally be done on the middle-tier, i.e.
MIDASConnection.AppServer.ApplyUpdates(

DetailVar, MasterVar); }
Database.StartTransaction;

try
ApplyDelta(cdsMaster, MasterVar);

ApplyDelta(cdsDetail, DetailVar);

Database.Commit;

except
Database.Rollback

end;

{ If previous step resulted in errors, reconcile
error datapackets. }

if not VarIsNull(DetailVar) then
cdsDetail.Reconcile(DetailVar)

else if not VarIsNull(MasterVar) then
cdsMaster.Reconcile(MasterVar)

else
begin

cdsDetail.Reconcile(DetailVar);

cdsMaster.Reconcile(MasterVar);

cdsDetail.Refresh;

cdsMaster.Refresh;

end;
end;

Figure 4: ApplyUpdates when using ClientDataset.

Columns & Rows
By contrast, all the changes made to the data are stored locally
on the client machine — even across different master records.
Remember that a key benefit of ClientDataset is that it will
allow us to delay the processing and reconciliation of the data
until absolutely necessary. To reconcile the data back to the
database, we need to write our own ApplyUpdates logic (see
Figure 4). This isn’t as simple as most tasks in Delphi, but it
does give you full flexible control over the update process.

Applying updates in a multi-tier application is usually trig-
gered by a call to ClientDataset.ApplyUpdates. This method
sends the information needed to update the database to its
15 April 1998 Delphi Informant
Provider on the middle tier, where the Provider will then
write the changes to the database. All of this is accom-
plished within a transaction, and is done without program-
mer intervention. To accomplish the same thing in a 2-tier
application, you must understand what Delphi is doing for
you when you make that call to ClientDataset.ApplyUpdates.

Any changes you make to ClientDataset data are stored
in the Delta property. Delta contains all the information
that will eventually be written to the database. This is
what Delphi passes to the Provider in the multi-tier
scenario above. Since our Provider exists on the same
tier as the ClientDataset, we can call
ClientDataset.Provider.ApplyUpdates. Remember to wrap
these calls in a transaction so you can write all the changes
as one unit. After applying the updates, a call to Reconcile
will finish clearing the cache for this ClientDataset.

Note that there were some inconsistencies in using this
method, depending on what database back-end you were
using. For instance, native Paradox access yielded sporadic
results in the testing of the MDCDS sample application.
Switching to the ODBC drivers for Paradox faired a little
better, but still produced some anomalies during the
update process. However, the sample worked flawlessly
with Microsoft SQL Server and Sybase SQL Anywhere
back-ends.

We could extend this example further, and take advantage of
the briefcase model previously mentioned. This would allow
our users to be completely disconnected from the database
server, make changes to the data, and apply the changes and
reconcile any errors back to the database at a later date, when
they can be physically connected to the network.

Lastly, if you find yourself missing the functionality of the
UpdateSQL component, you can find a version that is com-
patible with ClientDataset in the \Demos\Midas\Usqlprov
directory of the Delphi 3.01 update. The UpdateSQLProvider
component expands on the functionality of the Provider com-
ponent by providing an OnUpdateRecord event. With this
event, the developer can have record-by-record control of
the update process, which is useful for implementing busi-
ness rules. This component is also necessary for performing
updates using stored procedures. In addition, it also
expands on the functionality of the UpdateSQL component
by generating SQL code at run time. This is necessary if
you are working with data that contains NULL values that
need to be updated.

Deployment
When using the ClientDataset component, you have to deploy
two additional files: DBClient.DLL and STDVCL32.DLL.
DBClient implements the interfaces that drive ClientDataset,
while STDVCL32 is a type library for Delphi’s standard VCL.
COM uses the Windows registry to read and write informa-
tion about its components. Since these files are COM-based,
they need to be registered.

Columns & Rows
During the installation of your application, these files
should be copied to the \Windows\System directory and
registered by setting the appropriate option to “Register an
OCX.” However, if your installation program doesn’t allow
automatic registration, you can use Regsvr32.exe, or
Borland’s Tregsvr.exe (in the \Bin directory), to register
these files externally. One last point: The VCL automati-
cally tries to register these libraries if they are present, but
not registered.

Conclusion
This article has demonstrated the advantages of using
ClientDataset architecture in a 2-tier application. The
importance of becoming acquainted with these tools can-
not be understated. Borland’s commitment to this technol-
ogy shows you can take advantage of these controls today,
while giving your application a head start in transitioning
to a 3-tier model in the future. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\APR\DI9804DM.

Dan Miser is a Design Architect for Stratagem, a consulting company in
Milwaukee. He has been a Borland Certified Client/Server Developer since 1996,
and is a frequent contributor to Delphi Informant. You can contact him at
http://www.iinet.com/users/dmiser.
16 April 1998 Delphi Informant

http://www.iinet.com/users/dmiser

Visual Programming
Delphi 1, 2, and 3

By Gary Warren King

Message

WM_NCLBUTTONDOWN

WM_SYSCOMMAND

WM_GETMINMAXINFO

WM_MOUSEMOVE
WM_SIZING

WM_LBUTTONUP
WM_SIZE
WM_WINDOWPOSCHANGI

WM_WINDOWPOSCHANGE

Figure 1: Windows messages.

17 April 1998 Delphi Informant
Setting Limits: Part I
Enforcing Minimum and Maximum Form Size

You want to let the users of your application resize your forms. But they keep
making them too small or too big, then blaming you because things “don’t

look right.” If you switch the FormStyle to fsDialog or fsSingle, they complain the
application “isn’t flexible enough” because they can’t resize the form!
What to do? Can we create resizable forms
that won’t let themselves get too small (or
too big)? Yes, we can. As you’ll see, we can
even do it in a nicely-packaged component.
This two-part article will take the basic
Windows API solution (i.e. using
WM_GETMINMAXINFO) and package it
several ways. This first installment will:

Show the general idea by creating a form
that gives us the control we want;
discuss how to extend this solution
using form inheritance in Delphi 1, 2,
and 3; and
discuss what’s wrong with inheritance,
and look for something better.
Explanation

To resize, click the left button on the
form’s border.
Windows converts this click into a
system-command message (as if you
had chosen the Size command from
the Control menu).
Windows asks the form for minimum
and maximum size information.
You move the mouse.
Windows tells your form that its size
is changing.
You release the mouse button.
Windows tells your form its new size.

NG Windows tells your form that its posi-
tion (size, in this case) is changing.

D Windows tells your form that its posi-
tion (size, in this case) has changed.
The second installment will continue the dis-
cussion, and show how we can create a com-
ponent that adds the desired resizing control
to any Delphi form by using composition
instead of inheritance.

Getting the Message
Windows accomplishes most things send-
ing messages between the windows and
processes running on your computer.
When you use the keyboard or mouse, you
generate messages that are received and
processed by your application’s event loop.
Delphi hides most of the low-level details
very nicely, so you don’t usually need to
worry about them. When you resize a
form, it generates the messages shown in
Figure 1 — more or less. Windows 3.1 and
Windows 95 messages differ slightly, and
there are some added complexities that
we’ll gloss over for now.

The meaning of most of these messages is pret-
ty clear just from their names and the context.
If we look up each message in the Windows
Help file, we can delve into the details. For
example, WM_GETMINMAXINFO’s Help
topic reads:

The WM_GETMINMAXINFO message
is sent to a window when the size or posi-
tion of the window is about to change.
An application can use this message to
override the window’s default maximized
size and position, or its default minimum
or maximum tracking size.

type
TForm1 = class(TForm)
protected

{ Protected declarations }
procedure wmGetMinMaxInfo(var msg: TMessage);

message WM_GETMINMAXINFO;

end;

Figure 2: Handling the WM_GETMINMAXINFO message.

Visual Programming
The maximum tracking size is the largest window size that
can be produced by using the borders to size the window. The
minimum tracking size is the smallest window size that can
be produced by using the borders to size the window.

This is exactly the message we need to control the minimum
and maximum size of the form. If our form could intercept
this message and alter it, then we would gain complete con-
trol over just how big and how small it could appear.

Catching the Message
Delphi conveniently hides almost all the Windows messag-
ing arcana behind its pretty face: You know it’s happening
somewhere; but, because the standard VCL controls do what
you want most of the time, you seldom need to care exactly
where. Fortunately, Delphi makes it ridiculously easy to
catch particular messages and handle them in your own way.
It’s this combination of ease and power that makes Delphi
such a wonderful development tool.

To catch and handle the WM_GETMINMAXINFO message
in our form, we need to create a message-handling method.
Start with a new project, and add the contents of Figure 2 to
TForm1’s class interface. The wmGetMinMaxInfo procedure is
our new message handler. The message keyword tells the
Delphi compiler that this method should be called if the form
receives the WM_GETMINMAXINFO message from
Windows. In this case, the compiler handles all the hard work
of correctly interpreting and interfacing with the Windows mes-
saging system; all we need to do is write the method that
responds to WM_GETMINMAXINFO. Here’s one possibility:

procedure TForm1.wmGetMinMaxInfo(var msg: TMessage);

begin
with TWMGetMinMaxInfo(msg).MinMaxInfo^ do begin

{ Don't let this form get smaller than (200, 100) or
bigger than (400, 300). }

ptMinTrackSize := point(200, 100);

ptMaxTrackSize := point(400, 300);

end;
end;

Let’s see what’s going on here. Each Windows message carries
extra data in its wParam and lParam fields. The meaning of
this data varies depending on the needs of the particular mes-
sage. The WM_GETMINMAXINFO message uses its
lParam to contain a pointer to a TMinMaxInfo structure,
which is defined (in Wintypes.pas or Windows.pas) as:

PMinMaxInfo = ^TMinMaxInfo;

TMinMaxInfo = packed record
ptReserved: TPoint;

ptMaxSize: TPoint;

ptMaxPosition: TPoint;

ptMinTrackSize: TPoint;

ptMaxTrackSize: TPoint;

end;

Notice that Delphi also defines a pointer type (PMinMaxInfo)
to point to this structure. TMinMaxInfo holds five points
determined by (X, Y) pairs: four to hold the various mini-
mum and maximum sizes, and one reserved for future
Microsoft schemes.
18 April 1998 Delphi Informant
To make life easier for the Delphi programmer, Borland pro-
vides specialized message types for most of the Windows
messages, including WM_GETMINMAXINFO. Here is
TWMGetMinMaxInfo (from Messages.pas):

TWMGetMinMaxInfo = record
Msg: Cardinal;

Unused: Integer;

MinMaxInfo: PMinMaxInfo;

Result: Longint;

end;

This means that the somewhat cryptic with statement:

with TWMGetMinMaxInfo(msg).MinMaxInfo^ do begin

accomplishes four things:
1) It takes the incoming message;
2) casts it as a TWMGetMinMaxInfo;
3) pulls out the MinMaxInfo field (which is a pointer

to a TMinMaxInfo); and
4) de-references the pointer so we can use and modify its

contents.

If you compile and run this simple application, you’ll see that
you’re still able to resize the form, but only within the limits
we specified in the wmGetMinMaxInfo method. This message-
handler method works fine in all versions of Delphi. The abil-
ity to conveniently catch any Windows message is powerful,
but has its limitations as well. For example, if we want to con-
strain the sizes of many of the forms in our application, this
method would have us typing the same information over and
over again. There must be a better way!

Inherit the Form
One better solution (though, as we’ll see in the second
installment, not the best solution) is to put our special
message handling into its own form, then inherit this func-
tionality wherever we need it. Though handled differently,
form inheritance is a viable option in all versions of
Delphi. Before we see how it works, however, lets improve
the interface of our existing min/max form. We want it to
be easy to modify the size constraints of the form (ideally
both at design and run time). A better way to expose the
minimum and maximum tracking sizes is to make them
properties of the form. Figure 3 shows an abridged version
of TMinMaxForm.

We’ve given the form new properties (MinTracking and
MaxTracking) for the height and width of the sizes we
want to constrain. These properties are stored in TPoint
structures, and accessed by the various Get and Set meth-
ods of the class. The Set methods have the side effect of
calling UpdateSize:

TMinMaxForm = class(TForm)
procedure FormShow(Sender: TObject);

private
FMinTrackSize: TPoint;

FMaxTrackSize: TPoint;

function GetMaxTrackSizeX: integer;
function GetMaxTrackSizeY: integer;
...

procedure SetMinTrackSize(const p: TPoint);

procedure SetMaxTrackSize(const p: TPoint);

procedure SetMaxTrackSizeX(const x: Integer);

procedure SetMaxTrackSizeY(const y: Integer);

...

procedure UpdateSize;

procedure wmGetMinMaxInfo(var msg: TMessage);

message WM_GETMINMAXINFO;

published
property ResizeMaxHeight: Integer

read GetMaxTrackSizeY write SetMaxTrackSizeY

default 0;

property ResizeMaxWidth: Integer

read GetMaxTrackSizeX write SetMaxTrackSizeX

default 0;

...

end;

Figure 3: Converting tracking sizes to form properties.

Visual Programming
procedure TMinMaxForm.SetMinTrackSize(const p: TPoint);

begin
if (p.x = FMinTrackSize.x) and

(p.y = FMinTrackSize.y)) then
Exit;

FMinTrackSize := p;

UpdateSize;

end;

UpdateSize makes sure any changes to the size constraints
are immediately reflected in the size of the form. If, for
example, you tell the form that it can’t be any wider than
400 pixels — and it’s currently sized at 500 pixels — you
want it to immediately resize itself, taking the new con-
straint into account. UpdateSize does this by calling the
MoveWindow Windows API command, using the current
size and position of the form as its parameters. Calling
MoveWindow this way doesn’t actually move the form, but
procedure TMinMaxForm.wmGetMinMaxInfo(var msg: TMessage);

var
P : TPoint;

begin
with TWMGetMinMaxInfo(msg).MinMaxInfo^ do begin

if not ((FMinTrackSize.X = 0) and
(FMinTrackSize.Y = 0)) then

begin
P := FMinTrackSize;

if P.X = 0 then P.X := Screen.Width;

if P.Y = 0 then P.Y := Screen.Height;

ptMinTrackSize := P;

end;
if not ((FMaxTrackSize.X = 0) and

(FMaxTrackSize.Y = 0)) then
begin

P := FMaxTrackSize;

if P.X = 0 then P.X := Screen.Width;

if P.Y = 0 then P.Y := Screen.Height;

ptMaxTrackSize := P;

end;
end;

end;

Figure 4: Implementing the wmGetMinMaxInfo method.

19 April 1998 Delphi Informant
generates WM_SIZE messages that eventually result in
WM_GETMINMAXINFO messages, which cause the new
constraints to be used:

procedure TMinMaxForm.UpdateSize;

begin
{ Make sure any min/max settings are activated by calling

the MoveWindow API command. Although we call it with
parameters that match the current size of the window,
it will send a WM_GETMINMAXINFO message. }

MoveWindow(Handle, Left, Top, Width, Height, True);

end;

Finally, we implement the wmGetMinMaxInfo method (see
Figure 4). We first check to see if we’ve defined a size con-
straint, by determining if either value is non-zero. We then
need to add special checks for constraints that set only one of
the properties — so that we don’t try to tell Windows that,
for example, the minimum height is zero. These improve-
ments will make this form much easier to use when we deal
with inheritance.

Form Inheritance in Delphi 1
Now that we have a form from which to inherit, it’s an easy
matter to do the inheriting. Delphi 1 got a bad rap because
it doesn’t support visual form inheritance; but it’s important
to remember that it does support regular form inheritance.
You just can’t see what you’re doing! To try this out, create a
blank project in Delphi 1, add the unit name of the form
we created to the uses clause, and modify the type defini-
tion of the form (see Figure 5). You can then add size con-
straints to TForm1:

procedure TForm1.FormCreate(Sender: TObject);

begin
ResizeMaxHeight := 200;

ResizeMinWidth := 400;

ResizeMinHeight := 100;

end;

If you compile and run this new project, you’ll see that
although it wasn’t a visual process, TForm1 does inherit from
TMinMaxForm. Delphi 2 and 3 make inheritance even easier
with the Object Repository.

Form Inheritance in Delphi 2 and 3
Delphi 2 and 3 greatly enhance form inheritance by mak-
ing it visual, and supporting it directly within the Delphi
IDE. You can easily extend the Delphi environment by
adding your own forms (and projects, classes, etc.) to the
Object Repository. Once added, these forms become the
starting point for any new forms you create.

To place a form in the repository, just open it from within the
IDE, and right-click to produce its SpeedMenu. Select the
uses
SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, Dialogs, fmminmax;

type
TForm1 = class(TMinMaxForm)

Figure 5: A test for TForm1.

Visual Programming
Add to Repository command, and you’ll see the dialog box
shown in Figure 6. (I’ve already filled it in.) Once you’ve added
something to the repository, you get it out again by choosing
the File | New command from within the Delphi IDE (in ver-
sion 2 and newer). The Delphi 2 New Items dialog box is
shown in Figure 7. As you can see, Delphi gives you three
options when taking things out of the Repository. You can:

create a new item as a copy of the Repository item,
create a new item that inherits from the item in the
Repository, or
simply use the Repository item directly.

Copying is useful when you want to base your new work
on an existing solution, but don’t want changes in the
existing solution to alter the new item. Using the item
directly generally isn’t a good idea unless you need to mod-
ify an item in the Repository. When you use an item,
you’re creating a direct link to the Repository. Any changes
made there will affect your new work. Inheritance provides
the full power of object-oriented class inheritance: Your
new item will have all the properties and methods of the
item it inherits from. This can be a great way of placing
common functionality or look-and-feel in one form, then
building the rest of your application on that form. If you
change the base form, all your child forms will immediate-
ly inherit the new look and behavior.

To create a new form based on the min/max form we just added
to the Repository, select it (on the Forms tab), choose the Inherit
20 April 1998 Delphi Informant

Figure 6: Delphi 2’s Add To Repository dialog box.

Figure 7: The Delphi 2 New Items dialog box.
radio button, and click OK. We can then add our size-setting
code to the form’s OnCreate event, and be ready to roll. Here’s
the code that Delphi generates when we click the OnCreate event
handler in the object inspector, and add our settings to it:

procedure TMinMaxForm1.FormCreate(Sender: TObject);

begin
inherited;
ResizeMaxHeight := 200;

ResizeMinWidth := 400;

ResizeMinHeight := 100;

end;

Because Delphi knows this form inherits from a class other
than TForm, it automatically adds the inherited keyword. If
you compile this project and run it, you’ll see it has exactly
the functionality we want.

What’s Wrong Here?
On the surface, inheritance (visual or otherwise) provides a
wonderful solution for us. When we want to create a form
whose size is constrained, we can simply inherit from
frmMinMax. This is certainly much nicer than our first solu-
tion (duplicating many lines of codes in each form), but still
suffers from some knotty problems.

Design-time control versus run-time flexibility. Inheritance
requires that we make our decisions at design time through
the construction of our class hierarchy. Inheritance is some-
thing that works with classes, and classes exist only in our
source code and compiler. When mixing and matching

objects at run time, the constraints of doing everything
with class-based inheritance can be overwhelming.

The multiplying-class problem. When we have only one
special property or ability to add to a form, inheritance
works wonderfully. But suppose we must add more spe-
cial forms to our Repository (for example, a form that
paints its title bar differently, or a form with rounded
borders or a gradient background). Now suppose we
want to use inheritance to mix and match between all
these special abilities. With four to choose from, we’d
need to create 15 classes to handle our needs:
TfrmMinMax, TfrmMinMaxSpecialTitle,
TfrmMinMaxRoundBorder,
TfrmMinMaxSpecialTitleRoundBorderGradient, etc.

Clearly, this quickly becomes unmanageable! Multiple inheri-
tance would provide one solution to this problem; but a better
solution is to realize that inheritance is not the correct way to
view this situation. Inheritance is applicable when the child
class is a specialization of the parent class — when the differ-
ences between the child and parent are not simply differences
in the data they contain, and when the child class extends the
responsibilities of the parent instead of negating or completely
changing them. These new abilities (MinMax, SpecialTitle,
etc.) are just decorations to the existing form class. (You can
find an excellent discussion of this sort of inheritance problem
— and a prototypical solution — in the Decorator pattern in
Design Patterns: Elements of Reusable Software Solutions

Visual Programming
[Addison Wesley, 1994], by Erich Gamma, et al.) They are bet-
ter modeled as collaborations that can be mixed and matched at
design and run time, rather than as static class-inheritance struc-
tures. Ideally, we would like to build new classes that worked
with a form to add the features we desire.

Conclusion
This article has shown how to add minimum and maximum size
control to a Delphi form, first by adding code directly to the
form class, then by using inheritance. Along the way, we’ve
looked at Windows messaging, form inheritance (in Delphi 1),
visual form inheritance (in Delphi 2 and 3), and the Object
Repository. Finally, we observed that inheritance is not the best
solution in every situation, and outlined the elements of a better
solution. Part II will explore mix-and-match feature composition
in detail, and build a component that can add size control
instantly to any form, regardless of its class. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\APR\DI9804GK.

Gary King is the principal of DesignSystems (http://www.oz.net/dsig), makers of
Interface Gizmos and other fine products for Delphi. He can be reached at
gking@oz.net.
21 April 1998 Delphi Informant

http://www.oz.net/dsig

22 April 1998 Delphi Informant

DBNavigator
Paradox / Borland Database Engine / Delphi

By Cary Jensen, Ph.D.
Interfaces
An Introduction

If you’re a regular reader of Delphi Informant, you’ve had the opportunity to
read a number of articles featuring the use of COM (Component Object

Model) technologies in Delphi 3 applications. These technologies include OLE
automation and ActiveX, among others. One reason for this extensive coverage
is that Delphi 3 is an outstanding tool for creating COM applications.
But why is Delphi so good at this? The
answer can be found in a new feature added
to the Object Pascal language with the intro-
duction of Delphi 3: the interface. A number
of these COM-related articles have discussed
interfaces, but most of them have done so
only in passing. This month’s “DBNavigator”
will take a different tack. Instead of focusing
on COM, let’s consider the interfaces.

A couple of general comments are in order,
however, before we get to the primary focus of
this article. First, interfaces are abstract by
nature. In this regard, I am reminded of some
beginning programming classes that I taught to
a group of non-programmers many years ago.
One of the concepts I had to introduce was
that of the variable. The thing is, once you
grasp the concept, it seems perfectly natural
and, in fact, obvious. But it’s easy to forget that
for people who haven’t been introduced to
variables via algebra, statistics, or some other
similar field of study, the concept of a variable
is a difficult one to grasp. This is also true with
interfaces. If you have not already dealt with
abstract classes or interfaces in either Java or
Delphi (or other object-oriented languages),
the concept may seem difficult. Fortunately,
once you begin working with interfaces, they
become quite natural.
The second point I want to make is that
while interfaces have several useful applica-
tions, they are currently used only for
COM by an overwhelming percentage of
Delphi developers. Consequently, it may
appear somewhat odd to consider interfaces
without much discussion of COM. But
interfaces do have other uses, and one of
these, the polymorphic treatment of dissim-
ilar objects, is discussed in this article.
However, for a more in-depth look at the
use of interfaces in COM-related applica-
tions, refer to those other articles that have
appeared, and will continue to appear, in
the pages of this magazine.

What Is an Interface?
An interface is a declaration of methods and
properties, much like the methods and prop-
erties declared in a class. Unlike a class defin-
ition, however, an interface doesn’t actually
implement those methods, nor does it store
the property values. In this respect, an inter-
face is like a pure virtual, abstract class,
where method declarations serve as place-
holders to be overridden and implemented
by descendent classes, giving those classes a
common set of methods. In other words,
interfaces provide a second mechanism, after
inheritance, for polymorphism.

DBNavigator
While an interface never implements the methods it declares,
the methods are designed to be implemented by a class.
When a class is declared, any interfaces it will implement are
included in the class definition, in a comma-separated list fol-
lowing the name of the class from which the new class is
descending. A class that includes an interface in its definition
is said to “implement that interface.”

If a class implements an interface, it’s required to imple-
ment all the methods of that interface. These methods
may be implemented either by declaring and implement-
ing the interface methods, or by inheriting methods that
provide the implementation of the methods defined in the
interface.

When two different classes implement the same interface,
by definition they share those common methods declared in
that interface. Furthermore, instances of those two classes
can be assigned to a variable declared to be of the interface
type. In the absence of an interface, two objects that repre-
sent instances of two different classes are not assignment
compatible unless they descend from a common ancestor.
Furthermore, they are only assignment compatible with
respect to that common ancestor class.

However, with interfaces, it’s possible to declare a variable
of the interface type, and assign to it an instance of any
class that implements that interface. This is true even
when the two classes are unrelated in an object-oriented
sense (other than by their common TObject ancestor
class). Once an instance of an object that implements an
interface is assigned to a variable of that interface type,
that variable can be used to call the methods of the inter-
face. In other words, the methods of the interface can be
called without regard to how those methods are imple-
mented. This is the essence of polymorphism. Another
way of looking at it is that interfaces provide for the poly-
morphic benefits of multiple inheritance, even though
classes in Delphi can descend from only a single ancestor.
(With languages that support multiple inheritance, such as
C++, a new class can be declared that simultaneously
descends from two or more existing classes.)

Declaring an Interface
An interface declaration looks similar to a class declaration.
It must appear in a type block, and include the reserved
word interface, as opposed to class. Like class declarations,
interfaces cannot be declared within functions or proce-
dures. Furthermore, unlike a class declaration, an interface
cannot include instance variables. As a result, declarations
of properties in interfaces must use accessor methods to get
and set properties, as opposed to direct access (which
requires instance variables).

The following is the declaration of an interface that declares
three methods and a property. Two of the methods,
getMessText and setMessText, are accessor methods (some-
times called “getter” and “setter” methods):
23 April 1998 Delphi Informant
type
IShowMess = interface(IUnknown)

['{ F8AA90A1-EA2D-11D0-82A8-444553540000 }']
function ShowMessage: Boolean;

function getMessText: string;
procedure setMessText(Value: string);
property MessText: string read getMessText

write setMessText;

end;

This interface is named IShowMess, and it descends from the
interface IUnknown. Interface names begin with an “I” by
convention. IUnknown is similar to TObject, in that it is the
highest-level interface, itself having no ancestor.

When you declare a new interface, you can specify from
which interface it descends. However, forward declarations of
interfaces are allowed. This is done simply by declaring the
interface using the keyword interface without a descendant
interface. Like forward class declarations, this is only neces-
sary when you are declaring two (or more) interfaces whose
declarations are mutually dependent.

The second line of this interface declaration contains a 128-bit
binary number known as a GUID (Globally Unique IDentifier).
Interfaces used in COM and related technologies require a
GUID, but an interface that is not used in COM does not.
IUnknown is the interface required by all COM objects.

You never generate a GUID on your own, since it is essential
that the GUID for a particular interface be unique across all
machines that exist or will exist. Instead, you should use the
appropriate Windows API call to generate it. In Delphi, mak-
ing this call manually is never necessary, since you can simply
press CSG from within the editor to generate a
valid GUID and insert it at the position of the cursor.

As mentioned earlier, all interfaces, by definition, descend from
IUnknown. Since IUnknown specifies three functions,
QueryInterface, _AddRef, and _Release, these methods must be
implemented for any interface. It should also be noted that the
IUnknown interface provides for one very specific function: the
referencing of objects. Specifically, the implementation of
QueryInterface is designed to instantiate an instance of a
requested object and return a pointer to it. Furthermore,
_AddRef and _Release are designed to perform reference count-
ing. Taken together, these methods must implement the cre-
ation and destruction of requested objects.

IUnknown is special for another reason. Its definition is speci-
fied by COM. Furthermore, any component that implements
the IUnknown interface, regardless of which language it is
written in, is a COM server. It is due to this fact that we can
say that Delphi has language-level support for COM.

The following is the Object Pascal declaration of IUnknown:

IUnknown = interface
['{ 00000000-0000-0000-C000-000000000046 }']
function QueryInterface(const IID: TGUID;

out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

DBNavigator

Figure 1: The main form of the Intrface project.
As far as OLE automation is concerned, there is a second
interface that is important. This interface is IDispatch. Any
component that implements IDispatch is an OLE automa-
tion server, by definition. The following is the Object Pascal
declaration of IDispatch:

IDispatch = interface(IUnknown)
['{ 00020400-0000-0000-C000-000000000046 }']
function GetTypeInfoCount(out Count: Integer):

Integer; stdcall;
function GetTypeInfo(Index, LocaleID: Integer;

out TypeInfo): Integer; stdcall;
function GetIDsOfNames(const IID: TGUID;

Names: Pointer; NameCount, LocaleID: Integer;

DispIDs: Pointer): Integer; stdcall;
function Invoke(DispID: Integer; const IID: TGUID;

LocaleID: Integer; Flags: Word; var Params;

VarResult, ExcepInfo, ArgErr: Pointer):

Integer; stdcall;
end;

The IUnknown and IDispatch interfaces are declared in
Delphi’s System unit.

Implementing Interfaces
The methods of an interface are implemented by an object
that implements the interface. In other words, when an inter-
face appears in the declaration of a class, the class must declare
and implement all the methods defined in the interface (or
interfaces when the class implements more than one inter-
face). Furthermore, if an object implements an interface other
than IUnknown, it must implement all methods declared in
the interfaces from which the implemented interface descends.
For example, if a class implements the IDispatch interface, the
class must not only implement the four methods declared in
IDispatch, it must also implement the three methods declared
in IUnknown, since IDispatch descends from IUnknown. In
fact, since every interface descends from IUnknown, any class
that implements an interface must implement the methods of
IUnknown, by definition.

The implementation of the methods declared in an inter-
face may be inherited methods. In other words, if a new
class is declared to descend from a class that implements the
three methods declared in IUnknown (QueryInterface,
_AddRef, and _Release), the implementation of IUnknown is
satisfied. In fact, Delphi provides a large number of classes
that implement the basic interface methods of IUnknown.
For example, the TInterfacedObject class implements the
IUnknown interface. As a result, any object that descends
from TInterfacedObject is a COM server. Additional classes
include TAutoObject and TActiveXObject. TAutoObject
implements IDispatch, so any object that descends from
TAutoObject is an OLE automation server. Likewise,
TActiveXControl implements more than 10 additional inter-
faces required by the ActiveX specification.

It’s also interesting to note that the TComponent class imple-
ments all seven methods defined by IUnknown and IDispatch.
Consequently, you can declare any descendant of
TComponent to implement IDispatch without having to man-
ually implement these methods.
24 April 1998 Delphi Informant
Consider the following type declarations, which include the
declaration of one interface, IShowMess, and two new classes,
both descending from TInterfacedObject:

type
IShowMess = interface(IUnknown)

['{ F8AA90A1-EA2D-11D0-82A8-444553540000 }']
function ShowMessage: Boolean;

function getMessText: string;
procedure setMessText(Value: string);
property MessText: string read getMessText

write setMessText;

end;
TYesDefault = class(TInterfacedObject, IShowMess)

FMessText: string;
function ShowMessage: Boolean;

function getMessText: string;
procedure setMessText(value: string);

end;
TNoDefault = class(TInterfacedObject, IShowMess)

FMessText: string;
function ShowMessage: Boolean;

function getMessText: string;
procedure setMessText(value: string);

end;

Since both of these objects implement IShowMess, it’s neces-
sary for them to also declare and implement the methods
declared in the interface IShowMess. In this case, this includes
the ShowMessage function, as well as the getMessText and
setMessText accessor methods (methods used to read and write
the property declared in the interface). Notice, while the
interface declares the property, it doesn’t need to be rede-
clared in the classes that implement the interface. When this
approach is taken, the property belongs to the interface, but
not to the class that implements the interface.

As mentioned earlier, when a class implements an interface, it
must provide for the implementation of the methods
declared in the interface. Since the TYesDefault and
TNoDefault classes descend from TInterfacedObject, the
implementation of the IUnknown methods are satisfied.
However, both of these classes must implement the methods
of IShowMess. This can be seen in Listing One (see page26),
from the Intrface project. Notice that while the implementa-
tion of the accessor methods are identical for both classes, the
ShowMessage method differs. Specifically, when an instance of
the TYesDefault class displays a confirmation dialog box, the
OK button is the default, while an instance of the TNoDefault
class specifies that the Cancel button is the default.

On the main form of the Intrface project (see Figure 1),
there are two buttons representing the two means by

DBNavigator
which the methods of TYesDefault and TNoDefault
instances can be called. The first button, labeled Use

Objects, demonstrates the way that these methods are typi-
cally called, using object references. The following is the
OnClick event handler for this button:

procedure TForm1.Button1Click(Sender: TObject);

var
Mes1: TYesDefault;

Mes2: TNoDefault;

begin
Mes1 := TYesDefault.Create;

Mes2 := TNoDefault.Create;

Mes1.setMessText('This is a TYesDefault');

Mes1.ShowMessage;

Mes2.setMessText('This is a TNoDefault');

Mes2.ShowMessage;

Mes1.Free;

Mes2.Free;

end;

When this button is clicked, the objects are created, the
setMessText method is called to assign a value to the
FMessText field, the ShowMessage method is called to dis-
play the message, and then the objects are freed.

The second button, labeled Use Interfaces, demonstrates how
an interface variable can be used to call the ShowMessage
methods of the TYesDefault and TNoDefault class instances.
The following is the OnClick event handler for this button:

procedure TForm1.Button2Click(Sender: TObject);

var
IntVar: IShowMess;

begin
IntVar := TYesDefault.Create;

IntVar.MessText := 'This is a TYesDefault';

IntVar.ShowMessage;

IntVar := TNoDefault.Create;

IntVar.MessText := 'This is a TNoDefault';

IntVar.ShowMessage;

end;

In this case, the values returned by the call to the
TYesDefault and TNoDefault constructors are assigned to
the interface variable, which is a legal assignment due to
both of these classes implementing the IShowMess inter-
face. With the interface variable pointing to an interfaced
object that implements the interface, the methods and
properties of the interface can be accessed.

The key here is that the properties and methods of the
interface can be called for any object that implements the
interface, even when those objects that implement the
interface do not inherit the properties and methods from a
common ancestor. In this case, the MessText property and
ShowMessage method are not inherited by TYesDefault and
TNoDefault from TInterfacedObject. Instead, they are
instantiated within each of these classes. Without the
interface, they would be incompatible. It is the interface
itself, which, by being implemented by these two, sepa-
rates classes and guarantees cross-object compatibility. To
put this another way, the interface provides for polymor-
phism in the absence of methods inherited from a com-
mon ancestor.
25 April 1998 Delphi Informant
While the TYesDefault and TNoDefault classes both descend
from a common ancestor, this was not necessary. This tech-
nique would have worked just as well if TYesDefault descended
from TInterfacedObject, and TNoDefault descended from
TLabel (recall that TLabel inherits the IUnknown methods
from TComponent).

There is one additional characteristic of the interface variable
example that I’m sure you’ve noticed. Specifically, unlike in the
object reference example, there is no explicit call to free the
objects referenced by the interface variable. In fact, since Free is
not declared for the interface, attempting to call Free using the
interface variable would result in a compiler error. But this
does not mean that the objects referenced by the interface vari-
able are not freed; indeed, they are. As you recall, IUnknown
implements methods responsible for object creation, reference
counting, and object destruction. The destruction of an object
being referenced using an interface reference occurs automati-
cally after the last reference to the object is released.

There are three conditions that cause the _Release method of
an interfaced object to be called:
1) The interface variable goes out of scope.
2) The interface variable is assigned a different interfaced

object.
3) The interface variable is set to nil.

When the last reference to the interface object is released, and
the object’s reference count decrements to zero, the object is
automatically freed.

Interfaces and Method Resolution
As you’ve already learned, any object that implements an
interface is required to implement the methods defined with-
in that interface. This can pose a problem if the interface
declares a method whose name is already in use by an object
that needs to implement the interface. For example, imagine
there is a class named TMessageObject that must implement
the IShowMess interface, but has inherited the method
ShowMessage from its ancestor. This is a problem if the inher-
ited method is conceptually different from the interface
method of the same name. In this case, it’s necessary to
implement a method corresponding to the interface method,
and distinguish it from the inherited method.

Delphi provides for the mapping of interface methods onto
implemented methods of a different name. For example, con-
sider the following declaration of TMessageObject:

type
TMessageObject = class(TParentMessageObject, IShowMess)

FMessText: string;
function IShowMess.ShowMessage := DisplayMessage;

function GetMessText: string;
procedure setMessText(value: string);
function DisplayMessage: Boolean;

end;

This declaration specifies that TMessageObject descends
from TParentMessageObject, and implements IShowMess.
Since TMessageObject already has a ShowMessage method, it

DBNavigator
is necessary to map the IShowMess.ShowMessage method to a
different method name, which in this case is DisplayMessage.
When using method resolution to map an interface method
onto a new method name, the interface method, and the
one it’s being mapped to, must have the same argument list
and return type.

Given the preceding type declaration, if the ShowMessage
method for an instance of TMessageObject is called using an
object reference, the inherited ShowMessage method is execut-
ed. However, if an instance of TMessageObject is assigned to
an IShowMess variable, and the ShowMessage method is called,
the DisplayMessage method will execute.

Conclusion
Interfaces provide Delphi with language-level support for
COM. However, interfaces aren’t just for COM. Specifically,
interfaces provide you with an additional source of polymor-
phism, providing for assignment compatibility across dissimi-
lar objects. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\APR\DI9804CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is author of more than a dozen books, including
Delphi in Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing Editor
of Delphi Informant, and was a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://idt.net/~jdsi. You can also reach Jensen Data Systems at
(281) 359-3311, or via e-mail at cjensen@compuserve.com.
Begin Listing One
unit main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls;

type
IShowMess = interface(IUnknown)

['{ F8AA90A1-EA2D-11D0-82A8-444553540000 }']
function ShowMessage: Boolean;

function getMessText: string;
procedure setMessText(Value: string);
property MessText: string read getMessText

write setMessText;

end;
TYesDefault = class(TInterfacedObject, IShowMess)

FMessText: string;
function ShowMessage: Boolean;

function getMessText: string;
procedure setMessText(value: string);

end;
TNoDefault = class(TInterfacedObject, IShowMess)

FMessText: string;
function ShowMessage: Boolean;
26 April 1998 Delphi Informant
function getMessText: string;
procedure setMessText(value: string);

end;
TForm1 = class(TForm)

Button2: TButton;

Button1: TButton;

procedure Button2Click(Sender: TObject);

procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

function TYesDefault.getMessText: string;
begin

Result := FMessText;

end;

procedure TYesDefault.setMessText(value: string);
begin

FMessText := Value;

end;

function TYesDefault.ShowMessage;

begin
if MessageBox(HInstance, 'Continue?', PChar(FMessText),

MB_OKCANCEL+MB_DEFBUTTON1) <> IDOK then
Result := False

else
Result := True;

end;

function TNoDefault.getMessText: string;
begin

Result := FMessText;

end;

procedure TNoDefault.setMessText(value: string);
begin

FMessText := Value;

end;

function TNoDefault.ShowMessage;

begin
if MessageBox(HInstance, 'Continue?', PChar(FMessText),

MB_OKCANCEL+MB_DEFBUTTON2) <> IDOK then
Result := False

else
Result := True;

end;

procedure TForm1.Button1Click(Sender: TObject);

var
Mes1: TYesDefault;

Mes2: TNoDefault;

begin
Mes1 := TYesDefault.Create;

Mes2 := TNoDefault.Create;

Mes1.setMessText('This is a TYesDefault');

Mes1.ShowMessage;

Mes2.setMessText('This is a TNoDefault');

Mes2.ShowMessage;

Mes1.Free;

Mes2.Free;

end;

procedure TForm1.Button2Click(Sender: TObject);

http://idt.net/~jdsi

DBNavigator
var
IntVar: IShowMess;

begin
IntVar := TYesDefault.Create;

IntVar.MessText := 'This is a TYesDefault';

IntVar.ShowMessage;

IntVar := TNoDefault.Create;

IntVar.MessText := 'This is a TNoDefault';

IntVar.ShowMessage;

end;

end.

End Listing One
27 April 1998 Delphi Informant

Algorithms
Delphi 1, 2, 3 / Algorithms

By Rod Stephens

28 April 1998 Delphi Informant
Rough around the Edges
Antialiasing in Delphi

If you look closely at a computer monitor, you can see the pixels that make up
the lines and characters. Lines drawn at certain angles can appear particular-

ly rough and jagged. This effect is called aliasing. Figure 1 shows a close-up of
some aliased text. Notice how rough the left edges of the letters “A” and “l” are.
Aliasing occurs when data is sampled at a fre-
quency that is insufficient to capture all of
the data’s important information. In this
case, the monitor displays images at a resolu-
tion of around 96 pixels per inch. Your eye
can resolve a few thousand points per inch;
because your eye has such high resolution,
you can see the places where the monitor
draws lines and curves with jagged approxi-
mations.

Normally, when a computer draws a black
line, it makes some pixels black and it leaves
others unchanged, as shown in Figure 2.
This produces a jagged, aliased line. You can
smooth the rough edges using a technique
called antialiasing (or dejagging). In antialias-
ing, pixels that intersect the line are drawn
using a color that corresponds to the amount
by which they are covered by the line. If a
pixel is 50-percent covered, it’s drawn 50-
percent black; if the pixel is 25-percent cov-
ered, it’s drawn 25-percent black. Figure 3
shows a close-up of a line drawn with
antialiasing. Seen at a distance, this line
appears smoother than the line in Figure 2.
It also appears wider and slightly fuzzier.

Supersampling
The calculations that determine the amount
of a pixel covered by a line, or other shape,
are quite complicated. Fortunately, a much
simpler technique called supersampling pro-
duces a similar result. Instead of drawing the
image at the monitor’s normal 96-or-so pixels
per inch, you draw it at a higher resolution.

Figure 2: Drawing lines normally pro-
duces a jagged result.

Figure 3: Drawing with antialiasing.

for y := 0 to (big_bm.Height - 3) div 2

for x := 0 to (big_bm.Width - 3) div
// Compute the value of output pixe
totr := 0;

totg := 0;

totb := 0;

for j := 0 to 1 do begin
for i := 0 to 1 do begin

SeparateColor(

big_bm.Canvas.Pixels[2*x+i, 2

totr := totr + r;

totg := totg + g;

totb := totb + b;

end;
end;
out_bm.Canvas.Pixels[x, y] :=

RGB(totr div 4, totg div 4, totb

end;
end;

Figure 5: The heart of the antialiasing cod

Figure 1: An example of aliasing.

Figure 4: A supersampled line.

Algorithms

29 April 1998 Delphi Informant
You then use the pixel values at the higher resolution to deter-
mine the pixel values at the monitor’s normal resolution.

For example, if you supersample at twice the monitor’s resolution,
the supersampled image will be twice as many pixels wide and
twice as many pixels tall as the output image. Each output pixel
at the monitor’s scale corresponds to a two-by-two rectangle of
supersampled pixels.

Figure 4 shows the line from Figure 2 supersampled. Each pixel at the original scale
has been broken into four smaller pixels at the enhanced scale. The dark circles
show the pixels at the supersampled scale that are drawn to represent the line. For
each output pixel, you now count the corresponding supersampled pixels that are
colored. For example, if three of the four supersampled pixels representing a point
are black, you make the output pixel 3/4 black.

One last trick makes all this easy in Delphi. Instead of trying to calculate the pixels
to draw at a supersampled resolution, you can simply draw the line at a larger scale.
Instead of calculating pixel values at twice the monitor’s resolution, you simply draw
the line at twice its normal size using Delphi’s normal line drawing routines. The
resulting image has twice the number of pixels vertically and horizontally as it would
normally. You can then examine the colors of the pixels drawn by Delphi to deter-
mine the colors for the output pixels.

A Bit of Code
The AAliasP program (available for download; see end of article for details) uses
these techniques to draw antialiased text. Enter a string in the text box and click
the Go button. The program redraws the text at twice its original scale using a font
twice as large as the original. It then uses the code shown in Figure 5 to reduce the
enlarged image in the big_bm bitmap and produce an antialiased image at normal
scale in the bitmap out_bm. (The helper procedure, SeparateColor, breaks a color
into its red, green, and blue components. The RGB function does the opposite —
it combines red, green, and blue values to produce a color value.)

Figure 6 shows the results of the AAliasP program. Notice how much smoother the
antialiased text is than the original. Because antialiasing makes objects slightly fuzzier,
the program works best when the font used is relatively large. Small fonts may be
blurred until they are hard to read.

An Artist’s Palette
AAliasP draws black text on a white background. Because it scales the original
image by a factor of two vertically and horizontally, each output pixel corre-
 do begin
2 do begin
l (x, y).

*y+j], r, g, b);

div 4);

e. Figure 6: Antialiasing a string in the sample program AAliasP.

30 April 1998 Delphi Informant

// Create a color palette including various combinations
// of yellow, white, black, and aqua.
procedure TAntiAliasForm.SetPalette(bm: TBitmap);

var
r, g, b : array [1..4] of Integer;

totr, totg, totb : Integer;

clr, i1, i2, i3, i4 : Integer;

pal : PLogPalette;

hpal : HPALETTE;

begin
pal := nil;
try

GetMem(pal, SizeOf(TLogPalette) + SizeOf(TPaletteEntry) * 255);

pal.palVersion := $300;

// Calculate RGB values for the colors.
SeparateColor(clYellow, r[1], g[1], b[1]);

SeparateColor(clWhite, r[2], g[2], b[2]);

SeparateColor(clBlack, r[3], g[3], b[3]);

SeparateColor(clAqua, r[4], g[4], b[4]);

// Calculate all combinations of the colors.
clr := 0;

for i1 := 0 to 4 do begin
for i2 := 0 to 4 - i1 do begin

for i3 := 0 to 4 - i1 - i2 do begin
// Create the color entry.
i4 := 4 - i1 - i2 - i3;

totr := i1 * r[1] + i2 * r[2] +

i3 * r[3] + i4 * r[4];

totg := i1 * g[1] + i2 * g[2] +

i3 * g[3] + i4 * g[4];

totb := i1 * b[1] + i2 * b[2] +

i3 * b[3] + i4 * b[4];

pal.palPalEntry[clr].peRed :=

Byte(Round(totr / 4));

pal.palPalEntry[clr].peGreen :=

Byte(Round(totg / 4));

pal.palPalEntry[clr].peBlue :=

Byte(Round(totb / 4));

clr := clr + 1;

end;
end;

end;
pal.palNumEntries := clr;

hpal := CreatePalette(pal^);

if hpal <> 0 then bm.Palette := hpal;

finally
FreeMem(pal);

end;
end;

Figure 7: Creating a color palette for antialiasing.

Figure 8: The sample program AAlias2P antialiasing
a smiley face.

Algorithms
sponds to four supersampled pixels. This means
the resulting pixels can have five different colors:
white, 25-percent black, 50-percent black, 75-
percent black, and black. The standard Windows
colors include enough shades of gray that the
result produced by AAliasP is reasonable.

If you add a few more colors to the image, how-
ever, the standard Windows colors may not be
good enough. The shades of color needed to
antialias the image may not be available. In that
case you can create your own color palette that
includes the colors you might need.
The SetPalette procedure shown in Figure 7 creates a color palette for use with a picture that contains black, white, yellow, and
aqua. It defines colors for all of the 35 possible combinations of four pixels using these four colors. For example, it defines a
color that is 25-percent black, 50-percent yellow, and 25-percent aqua. SetPalette then creates a color palette using these colors
and assigns it to the bitmap it takes as a parameter. When the program generates an antialiased image in the bitmap, all of the
colors it needs are available.

The program AAlias2P uses the SetPalette procedure to give its output picture an appropriate color palette. It then draws a pic-
ture of a smiley face and generates an antialiased version. The program is shown in Figure 8. The antialiased picture is
smoother than the original, though the effect may not be as striking as it is with antialiased text.

AAlias2P doesn’t use all of the 35 colors defined by SetPalette. For example, in the original image, aqua is adjacent only to
black, not white or yellow. This means none of the colors containing a mixture of aqua and white or aqua and yellow are
actually needed. For this picture, it does no harm to define the colors anyway. If the picture used a few more colors, how-
ever, there could easily be more than 256 color combinations. In that case, the program would need to have been more
selective about the colors it added to the color palette.

Algorithms
Conclusion
While antialiasing is too much work to be practical for every
label and text box, you can use these techniques to remove
the rough edges in a few special places. Using antialiased
images on splash screens, About boxes, and large section titles
can give your applications a smooth, polished look. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\APR\DI9804RS.

Rod Stephens is the author of several books, including Visual Basic Graphics
Programming and Visual Basic Algorithms, both from John Wiley & Sons. He
also writes algorithm columns in Visual Basic Developer and Microsoft Office
& Visual Basic for Applications Developer. You can reach him at
RodStephens@compuserve.com or see what else he’s up to at
http://www.vb-helper.com.
31 April 1998 Delphi Informant

http://www.vb-helper.com

32 April 1998 Delphi Informant

Informant Spotlight

By Chris Austria

B

We

Othe

TeleTools fo
The Spirit of Nagano?
The 1998 Delphi Informant Readers Choice Awards

Maybe it was the anxiety of a long, arduous winter. Or maybe it was the
spirit of the Winter Olympics fueling the competitive fires of Delphi vendors

and developers. Whatever it was that stimulated the competition, we’re thankful
for it. It made for an exciting year filled with innovation, perseverance, and
progress from people dedicated to delivering the best products to the market.
E

b

r

The all-powerful voice of the people has spo-
ken and has chosen what it deems to be the
best tools-of-the-trade. It’s time to see how
well your best-of-the-best choices match up
with your peers’. Some who have followed
previous Delphi Informant Readers Choice
Awards may be in for a surprise; others may
find themselves nodding their heads know-
ingly. First-timers will come to understand
what all the fuss has been about.

Again, several changes were made to this
year’s ballot to accommodate ever-shifting
technological trends. The Best Database
Server and Best Version Control categories
have been omitted, while a new category,
Best Charting Component, has been added.
Many of last year’s participants hung on for
ST CONNECTIVITY TOOL

Async Professional - 57%

Hub - 21%

r - 9%

 Delphi - 7%

PowerTCP - 4% ISGMapi - 2%
another year; others were quietly ousted and
replaced. New players managed to cram
themselves into already jam-packed cate-
gories, forcing us to reshape some bound-
aries. However, one thing remained the same:
the intensity of the competition.

Having set the stage, here are the winners…

Best Connectivity Tool
Previously named Best Internet/Communi-
cations, this category had essentially the same
participants as last year, with the exception of
TeleTools for Delphi from ExceleTel, Inc.
(which debuted this year in a respectable
fourth place). The top two finishers,
TurboPower’s Async Professional and HREF
Tools’ WebHub, are this year’s first repeat per-
formers. WebHub gained significant ground
this year, earning 21 percent of the votes (com-
pared to last year’s seven percent), and seems to
be closing in on the popular Async Professional,
which received 57 percent (compared to last
year’s 78 percent) to win the category.

But don’t count on TurboPower to rest on
their laurels. They’ve started shipping Async
Pro 2.5, which adds business telephony fea-
tures, such as .WAV file recording and play-
back, DTMF tone detection and generation,
voice-to-fax handoff, and ISDN support to
its powerful communications library.

Informant Spotlight
Best Delphi Book
The book that kept the most developers up late was Marco
Cantù’s Mastering Delphi 3 from SYBEX, collecting enough
votes to claim 29 percent of this category. Mastering Delphi 3
not only covers Delphi 3’s powerful new features, it provides
tips and techniques that allow developers to create innovative
Delphi applications.

Also banking on the latest version of Delphi was Ray Konopka’s
Developing Custom Delphi 3 Components from The Coriolis
Group. Coming in second, the “sequel” to last year’s Developing
Custom Delphi Components collected 15 percent of the votes.

Best VCL Component
This year’s VCL category presented several new players. In
the end, two contenders stood above the rest. Orpheus by
TurboPower out-muscled DBPower from Luxent Software
(which acquired DFL Software and Successware Intl. in June,
1997) by a narrow 5 percent. Orpheus, last year’s runner-up,
offers over 50 components to expand your library, whether
you’re using Delphi 1, 2, or 3. It adds capabilities such as
incremental search fields, scrolling list boxes, and data-entry
field editors for every native VCL data type.

Worthy of a second look is DBPower, the second-place win-
ner and a new participant in this category. Amassing a solid

BEST DELPHI BOOK

Mastering
Delphi 3 - 29%

Developing Custom
Delphi 3
Components - 15%

Client/Server
Developer’s Guide - 14%

Hidden Paths
of Delphi 3 - 11%

Other - 11%

Special Edition
Using Delphi 3 - 9%

High Performance
Delphi 3
Programming - 6%

Delphi 3 Programming
Explorer - 3% Teach Yourself Delphi 3

in 14 Days - 2%
BEST VCL COMPONENTS

Orpheus - 29%

Other - 22%

Raize Components
for Delphi - 13%

Rubicon for Delphi - 5%

LMD-Tools - 3%
Remember This - 2%

DBPower - 23%

ABC for Delphi - 3%

33 April 1998 Delphi Informant
24 percent, DBPower offers over 35 DBMS controls for
Delphi and C++Builder, including super grids, image but-
tons, and Quicken-style lookups.

Best ActiveX
Previously named Best OCX, the Best ActiveX category has a
familiar face in its winner’s circle: Luxent Software. Luxent accu-
mulated 60 percent of all ActiveX votes with its Light Lib Magic
Menus. This component allows developers to create visual and
dynamic user interfaces for their applications using background
images, textures, bitmap menu items, and tool-button palettes.

Second place went to last year’s winner, OCX Expert from
Apiary, Inc., and ActiveX Voice Tools from Speech Solutions,
Inc. Each collected 8 percent of the votes.

Best Installation Software
This one was a real nail biter. The top two contenders from last
year, InstallShield Express from InstallShield Software and Wise
Installation System from Great Lakes Business Solutions, made
repeat performances this year. This time around, the gap
between them was smaller — much smaller. InstallShield
Express edged out Wise Installation System by a single percentile
(InstallShield took 43 percent and Wise took 42 percent). It
seems they’ve both established a strong foothold on the installa-
tion software market. We’ll see what next year brings.

BEST ACTIVEX

Light Lib
Magic Menus - 60%

OCX Expert - 8%

ActiveX
Voice Tools - 8%

Visual Developers
Tool Suite - 7%

LeadTools OCX - 6%
Active ListBar - 2%

Image BASIC
for Delphi - 2%

Other - 7%
BEST INSTALLATION SOFTWARE

InstallShield Express - 43%

Wise Installation
System - 42%

Youseful - 6%

Eschalon
Setup 2 - 5% Other - 4%

BEST TRAINING

InfoCan
Management - 55%

ZAC Education’s Delphi
Training Tour - 25%

Database Programmer’s
Retreat - 5%

Other - 6%

The DSW Group, Ltd. - 4%
GenoTechs, Inc. - 2%Plains Technologies, Inc. - 3%

Informant Spotlight

BEST DELPHI ADD-IN

Other - 24%

BoundsChecker - 8%

Multi-Edit - 6%

CDK - 4%

SysTools - 15%

Raptor - 12%
TopGrid - 8%

Abbrevia - 8%

Propel - 6%

Xceed Zip
Compression Library - 5%

Demo Shield - 2% MagiKit - 2%

BEST WINDOWS HELP AUTHORING TOOL

RoboHELP - 38%Other - 7%

ProtoView Visual
Help Builder - 3%

Visual Help Pro - 5%
Best Training
I think everyone learned a little something after last year’s
Best Training competition, especially InfoCan Management.
Last year’s runner-up, InfoCan, gained enough ground to not
only pass ZAC Education’s Delphi Training Tour, but it won
by a significant margin, garnering 55 percent to ZAC
Education’s 25 percent. InfoCan is the only Canadian-based
training company on the ballot, and offers a variety of
Delphi-related training courses. InfoCan is also a Borland
Connections SI/VAR & Training Member.

Best Reporting Tool
This category brings another repeat winner: ReportPrinter Pro
from Nevrona Designs. Amassing 34 percent (14 points higher
than the second place winner), ReportPrinter Pro stands tall
after last year’s intensely close race in which ReportPrinter won
by a slim three percent. Offering 11 components with over 400
methods, properties, and events, and full 16- and 32-bit source
code, ReportPrinter Pro proved too tough to topple.

Something to keep a watchful eye on, however, is the runner-
up, Shazam Report Wizard from Shazamware Software
Solutions. At 20 percent, compared to less than three last
year, Shazam promises to be a worthy rival to ReportPrinter
Pro in the next Readers Choice Awards.
BEST REPORTING TOOL

ReportPrinter
Pro - 34%

Shazam Report
Wizard - 20%

Piparti - 16%

Crystal Reports - 12%

QuickReport - 4%

Other - 7%

ACE Reporter - 7%

ForeHelp - 31%

Help Magician
Pro 95 - 9%

Help Scribble - 7%
Best Delphi Add-In
The largest category also added many new players to the game,
but last year’s top vote-getter, SysTools from TurboPower,
34 April 1998 Delphi Informant
retained its title of Best Delphi Add-In with 15 percent of the
votes. With this award, TurboPower set a new record for hav-
ing the most first-place products in the same year of competi-
tion (Async Pro and Orpheus were the first two). SysTools pro-
vides over 600 routines for string manipulation, date and time
arithmetic, high-precision mathematics, and sorting.

Coming in a close second is Raptor from Eagle Software with
12 percent — only three points behind SysTools. Can this
rookie player knock down the veteran next year, or will
TurboPower add another add-in award to its trophy case?

Best Windows Help Authoring Tool
Last year, ForeFront Inc.’s ForeHelp took pole position with 40
percent, with RoboHELP from Blue Sky Software trailing
closely at 37 percent. This year delivered another exciting finish.
RoboHELP outscored ForeHelp 38 to 31 percent, establishing
itself as the new champion of Windows Help Authoring Tools.
Best Imaging Component
Picture this: Light Lib Docs & Images, from Luxent
Software, gathers 51 percent to take first place as Best
Imaging Component. Light Lib Docs & Images paints a
pretty picture using support for most image formats and
compression types, 24-bit color image display, an integrated
image gallery, an image navigator, and a whole list of picture-
perfect features.

BEST IMAGING COMPONENT

Light Lib
Docs &
Images - 50%

ImageLib
Corporate
Suite - 37%

ImageKnife/OCX - 2%
MetaDraw - 2%

Other - 5%

Raster Master - 3%

Informant Spotlight

BEST DATABASE TOOL

InfoPower - 36%

Apollo - 30%

ODBCExpress - 12%

CodeBase - 3%
AdHocery - 2%

Titan - 4%

Other - 13%

PRODUCT OF THE YEAR
The popular ImageLib Corporate Suite, from Skyline Tools
(last year’s winner with the same score of 37 percent), took
second place. Stay focused on this category for a great race.

Best Charting Component
Our charts showed us that a Charting Component category
would be quite practical and well received, and we were right.
The numerous responses to this brand new category yielded
teeChart from teeMach SL as a winner with 43 percent.
teeChart, packaged with Delphi 3, offers extensive and flexible
charting capabilities and is available in a professional version that
offers Candle, Volume, and Bar series types and extended func-
tion types, such as Moving Average and Relative Strength Index.

Right on teeChart’s heels was Light Lib 3D Business
Graphics Server from (no other than) Luxent Software, with
a total of 39 percent.
BEST CHARTING COMPONENT

teeChart - 43%

Other - 3%

GigaSoft ProEssentials - 2%

Light Lib 3D Business
Graphics Server - 39%

Chart FX - 7%

FastGraph - 2%

Graphics Server - 2%

SLGraph for Delphi - 2%

InfoPower - 21%

ODBCExpress - 7%

ImageLib Corporate
Suite - 5%

WebHub - 5%

ReportPrinter Pro - 5%

teeChart - 5%

Apollo - 18%

InfoCan Management - 18%

Async
Professional - 6%

TopGrid - 5%

Orpheus - 5%
Best Database Tool
In its second year, this category has been expanded to include
several new products, making the fight to the top that much
more challenging. The first to reach the peak this year was
InfoPower from Woll2Woll Software. No stranger to winning
— it was last year’s Product of the Year — InfoPower flexed
its database muscles to take 36 percent of the votes, passing
Apollo from Luxent Software, which won last year with a
whopping 72 percent. But Apollo had plenty of thrust left in
its jets, finishing with 24 percent this year.
35 April 1998 Delphi Informant
Product of the Year
There was a tremendous response to the Product of the Year
(we tallied approximately 150 products), but there can only
be one first-place winner. For the third time in three years,
InfoPower from Woll2Woll Software came out on top, gar-
nering 21 percent of the votes for this category.

Although InfoPower is well deserving of this award, an 18
percent showing by Luxent’s Apollo, as well as InfoCan
Management, certainly merits recognition. Only three per-
cent behind InfoPower, Apollo and InfoCan gained signifi-
cant ground this past year. (Note: The accompanying chart
reflects the percentage points earned by the top 10 finalists
only. A pie chart including all entries would not have effec-
tively rendered the relationship among the winners.)
Thank You All
This edition of the Readers Choice Awards, while being one of
surprises and upsets, also had its fair share of repeat performers
— products and companies that, after establishing themselves
in last year’s awards, made their presence known again this
year. Instead of resting with the knowledge that they have
accomplished their goals, they endeavored to go further than
ever before, formulating new goals and strategies, then execut-
ing them to perfection. In the end, we all benefit; the vendors
bask in the glory of being the best at what they do; developers
can choose the best tools to make better applications; and con-
sequently, the end users benefit from having powerful and
innovative products that help make their everyday lives more
productive. It’s a great operation.

Informant Spotlight
Somewhere in the middle of it all, we at Delphi Informant
are constantly gathering and translating the information
that you, our readers, need to know to make your Delphi-
related decisions a little easier. We thank you all for voting
and making your voices heard. Congratulations to all the
winners and to all who reached their goals. We look for-
ward to seeing you next year. ∆

Chris Austria, Products Editor at Informant Communications Group, can be
reached via e-mail at caustria@informant.com.
Best Connectivity Tool
Async Professional
TurboPower Software
Phone: (800) 333-4160 or
(719) 260-9136
Web Site: http://www.tpower.com

Best Delphi Book
Mastering Delphi 3
Marco Cantù
SYBEX
Phone: (510) 523-8233
Web Site: http://www.sybex.com

Best VCL Component
Orpheus
TurboPower Software
Phone: (800) 333-4160 or
(719) 260-9136
Web Site: http://www.tpower.com

Best ActiveX
Light Lib Magic Menus
Luxent Software
Phone: (909) 699-9657
Web Site: http://www.luxent.com

Best Installation Software
InstallShield Express
InstallShield Corp.
Phone: (800) 374-4353 or
(847) 240-9111
Web Site: http://www.installshield.-
com

Best Training
InfoCan Management
Phone: (888) INFOCAN or
(604) 736-5888
Web Site: http://www.infocan.com

Best Reporting Tool
ReportPrinter Pro
Nevrona Designs
Phone: (888) 776-4765 or
(602) 491-5492
Web Site: http://www.nevrona.-
com

Best Delphi Add-In
SysTools for Delphi
TurboPower Software
Phone: (800) 333-4160 or
(719) 260-9136
Web Site: http://www.tpower.com

Best Windows Help Authoring
Tool
RoboHELP
Blue Sky Software
Phone: (800) 793-0364 or
(619) 459-6365
Web Site: http://www.blue-sky.-
com

Best Imaging Component
Light Lib Docs & Images
Luxent Software
Phone: (909) 699-9657
Web Site: http://www.luxent.com

Best Charting Component
teeChart
teeMach, SL
Phone: 34 72 59 71 61
Web Site: http://www.teemach.-
com

Best Database Tool
InfoPower
Woll2Woll Software
Phone: (510) 371-1663
Web Site: http://www.woll2woll.-
com

Product of the Year
InfoPower
Woll2Woll Software
Phone: (510) 371-1663
Web Site: http://www.woll2woll.-
com

Contacting the Winners
36 April 1998 Delphi Informant

http://www.tpower.com
http://www.tpower.com
http://www.sybex.com
http://www.blue-sky.com
http://www.blue-sky.com
http://www.tpower.com
http://www.luxent.com
http://www.luxent.com
http://www.teemach.com
http://www.teemach.com
http://www.installshield.com
http://www.installshield.com
http://www.woll2woll.com
http://www.woll2woll.com
http://www.infocan.com
http://www.woll2woll.com
http://www.woll2woll.com
http://www.nevrona.com
http://www.nevrona.com

TextFile

The Tomes of Delphi 3: Win32 Core API

There’s been a buzz about
this book on the Internet
since last Fall. Finally, as
1997 came to an end, the
first volume of this eagerly
anticipated series by John
Ayres, et al. was released:
The Tomes of Delphi 3:
Win32 Core API.

Tomes is nothing less than a
milestone in Delphi publish-
ing. No longer will we feel
like second-class citizens of
the Windows development
community. No longer will
we look at our C/C++
brethren with envy while
secretly studying Waite
“Bibles” to learn basic, low-
level Windows API tech-
niques. No longer will we
need to translate everything
in those Windows references
from C to Pascal. Let’s see
what’s included in this first
volume.

After an overview of the
Windows API, the authors
delve into an important, but
seldom broached topic: qual-
ifying for the Windows 95
logo. This exposition is com-
prehensive and very well
done, explaining what
Delphi provides, what addi-
tional resources you might
37 April 1998 Delphi Informant
need, and where to find
more information.

Next, there are three lengthy
chapters on topics concern-
ing windows: creating them,
sending messages to/from
them, and getting informa-
tion about them. All of the
basic API functions needed
to create and manage win-
dows are covered, including
CreateWindow,
DestroyWindow,
Def WindowProc,
DispatchMessage,
SendMessageCallback,
TranslateMessage, and a mul-
titude of Windows informa-
tion functions.

However, you may be ask-
ing, “What can I do with
this information that I can’t
already do with Delphi
alone?” Let’s see.

The CreateWindowEx func-
tion, that is described in
some detail in the first of
these chapters, gives you the
ability to create a variety of
window types, including
ones which can accept files
dragged from other applica-
tions, floating toolbars, and
windows with various border
styles. Besides the basic mes-
sage-handling functions, the
chapter on messages includes
detailed information about
the message process itself. It
covers a number of interest-
ing topics, such as hooks,
which allow you to intercept
and handle messages. There’s
also a discussion and exam-
ple of how to create and reg-
ister your own messages.

Of these three chapters,
“Window Information
Functions” is the lengthiest,
covering a plethora of such
functions. For example, you
learn how to use
EnumWindows to traverse all
current top-level windows,
and FindWindowEx to get
the handle of a specific win-
dow. There is also a discus-
sion of the various functions
that allow you to manipulate
windows, including
SetClassLong and SetFocus.

Chapter 6 explains the
Windows multi-processing,
thread-related functions.
While Delphi, with its
TThread class, encapsulates
and simplifies a good deal of
the basic multitasking func-
tionality, this chapter gives
you the information you
need to go further, by work-
ing with critical sections,
semaphores, and mutexes.
Next, there are two chapters
covering dynamic link
libraries, INI and registry
files, and memory manage-
ment. As before, the treat-
ment is detailed and very
easy to follow. Developers
who find Delphi’s memory
management tools insuffi-
cient to meet their needs will
be delighted with the new
possibilities expounded in
the chapter on “Memory
Management Functions.”

The remaining chapters
explore familiar topics such as
the Clipboard, input devices,
file I/O, and system informa-
tion. Developers writing
international applications will
find the tools and techniques

“The Tomes of Delphi 3”
continued on page 38

The Tomes of Delphi 3 (cont. from page 37)

TextFile
in the “String and Atom Functions”
chapter useful. Basic string-manipulation
functions and others which provide
access to Windows’ internationalization
information are included.

Toward the end of the book, there’s a
rather lengthy chapter on “System
Information Functions,” functions useful
for ascertaining and/or changing a multi-
tude of Windows settings on a particular
machine, including accessibility features,
date and time settings, user information,
and hardware information. The book
concludes with a couple of short chapters
on timer and error functions.

The Tomes of Delphi 3: Win32 Core
API is very well organized and clearly
38 April 1998 Delphi Informant
written. It includes many code exam-
ples, all of which are included on its
accompanying CD-ROM. Each chap-
ter begins with a concise description
of the relevant topics, a description of
each major function, and tables
describing the various function para-
meters and return values. This book
will be indispensable for any develop-
er who plans to make use of Windows
API functions or develop custom
components that rely on those func-
tions. It also provides an excellent
road map of Delphi’s Visual
Component Library source code,
which — of course — itself uses
many of these functions. While some
of this information has appeared in
other Delphi books, this is the first
time it has all been gathered in one
place and organized into a highly
usable and comprehensive reference.
I recommend it highly.

— Alan C. Moore, Ph.D.

The Tomes of Delphi 3: Win32 Core
API by John Ayres, David Bowden,
Larry Diehl, Phil Dorcas, Kenneth
Harrison, Rod Mathes, Ovais Reza, and
Mike Tobin, Wordware Publishing,
Inc., 2320 Los Rios Boulevard, Plano,
TX 75074, (972) 423-0090,
http://www.wordware.com.

ISBN: 1-55622-556-3
Price: US$54.95
(788 pages, CD-ROM)

http://www.wordware.com

From the Trenches
Directions / Commentary
The Upgrade Game

Quick show of hands. How many of you upgraded to Delphi 3.01? Okay. How about Delphi 3.02? BDE
4.51? How about the various service packs for your operating system?
Software companies are working at a
feverish pace to develop and release new
versions of their products as soon as
humanly possible. Maintenance releases
and patches are being produced with
even greater regularity. With each new
version you can count on several new
features — and several new bugs. For
end users, it’s no fun to play the
upgrade game; sometimes upgrading
one part of a software package intro-
duces problems in another part.

It’s even worse for developers. To suc-
cessfully deploy quality applications
today, you need to stay on top of every
.001 release, and monitor how it inter-
acts with every other part of your appli-
cation. The amount of changes from
Redmond alone can cripple a budding
software company trying to support all
the possible permutations of software
configuration on an end user’s machine.

Why, then, should you play this game?
Developing software using outdated tools
and libraries puts you at a distinct disad-
vantage in obtaining support. Most devel-
opers tend to update their development
software when a new version comes out,
so don’t go to the newsgroup expecting to
get the same level of help for Delphi 2
and Delphi 3. It’s not going to happen.

When was the last time you were stuck
maintaining old code? It probably was-
n’t the most glamorous position, and it
certainly wasn’t fun. Programmers want
to build. They want to evolve the cre-
ation they started into something aes-
thetically pleasing. Maintaining dated
applications doesn’t fit the bill.
39 April 1998 Delphi Informant
We can look at the reason software
updates occur. This may help explain
why it’s beneficial to play the upgrade
game. New versions are built to pro-
vide increased functionality. What was
difficult — or impossible — to
accomplish with the previous version,
is made easier in the new one. This is
why it’s extremely important to keep
your software current; subtle — and
not-so-subtle — flaws are worked out
in subsequent versions.

This is especially true if you are on the
leading edge of technology, or using
some of the new features of Delphi 3.
For example, multi-tier development
with MIDAS, One-step ActiveX, and
WebModules were all introduced in
Delphi 3. Each maintenance release has
corrected problems in these areas. If you
don’t upgrade, you’ll be stuck trying to
find workarounds for problems that are
already fixed, i.e. re-inventing the wheel.

The upgrade to Delphi 3.01 was wel-
come for many reasons. Changes were
made, bugs were fixed, and documenta-
tion was updated on such a grand scale
that Borland decided to make the
upgrade a full install, as opposed to a
patch. Even at US$15 for an upgrade, it’s
a good deal. Some of the major changes
and additions in Delphi 3.01 include:

revised documentation, including
additions of example code
TMidasConnection to allow multi-
tier development with TCP/IP
and OLEnterprise (Client/Server
Suite only)
updated ISAPITER.DLL to accom-
modate Netscape Server 3
addition of Socket components to
the Professional version
a CAB file to easily deploy, install,
and configure the BDE over the
Internet

There are many more updated features;
check http://www.borland.com/-
delphi/del3update.html for details.
However, even this short list shows
that Borland has been listening to its
customers. They’re striving to make the
product better with each release.
They’re even introducing new features
in a .01 release! Borland has also
increased the frequency of mainte-
nance updates. No longer do you have
to wait for Borland to release the next
version of Delphi to get a bug fix.

Now, if you really want to be up-to-
date, Borland released Delphi 3.02 in
December 1997 (again, see
http://www.borland.com/delphi/-
del3update.html for details). You can
download this patch from the Web site,
but you need to be using Delphi 3.01
to apply it. You can also find the latest
version of the BDE, version 4.51, at
http://www.borland.com/devsupport/-
bde/bdeupdate.html. ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact him
at http://www.iinet.com/users/dmiser.

http://www.borland.com/delphi/del3update.html
http://www.borland.com/delphi/del3update.html
http://www.borland.com/delphi/del3update.html
http://www.borland.com/delphi/del3update.html
http://www.borland.com/devsupport/bde/bdeupdate.html
http://www.borland.com/devsupport/bde/bdeupdate.html
http://www.iinet.com/users/dmiser

File | New
Directions / Commentary
Best Vendor Web Sites

In his July, 1997 “File | New” column, Richard Wagner discussed several independent Delphi Web sites,
most of which featured Delphi components, resources, and information. This month, I will vary that theme

a bit, and discuss seven sites maintained by third-party Delphi producers.
The Veterans. While I won’t be discussing
Borland’s site specifically, I will use its fea-
tures-detailed product information, technical
papers, file download area, support facilities,
and links as benchmarks for assessing the
other sites. Besides Borland, there’s one other
company that’s certainly a veteran. That
company, TurboPower, has been supporting
Borland products nearly as long as the latter
has been in existence. You’d expect them to
have their Web act together, and they cer-
tainly do. Granted, you won’t find a lot of
general Delphi information or free stuff on
their site. However, you will find excellent
information on their many products. With
their newsgroups, weekly product tips, and a
wish list for customer input on product
upgrades, they provide many avenues for cus-
tomer communication on their site.

Now, we’ll shine the spotlight on two ven-
dors whose sites go beyond just support of
their products.

Eagle Software and Raize Software
Solutions. I’ve spent a lot of time at the Eagle
Software site, following with interest the beta
development of Raptor and CDK
(Component Development Kit) 3. But there’s
much more. I’m particularly impressed with
Mark Miller’s outstanding papers, particularly
40 April 1998 Delphi Informant

All URLs begin Downloads Te
with http://www. p

Eagle Software Excellent E
eaglesoftware.com
HREF Tools Corp. Excellent V
webhub.com
Nevrona Designs Excellent G
nevrona.com
Raize Software Excellent V
Solutions
raize.com
Shoreline Software Excellent G
shoresoft.com
Skyline Tools Excellent N
imagelib.com
TurboPower Excellent G
turbopower.com
the one on “Good Class Design.” Another
outstanding programmer and writer, Ray
Konopka, is the chief architect of Raize
Software Solutions. The Raize site provides
ample information and support for the Raize
components, and also contains an invaluable
archive of articles Konopka has written for
Visual Developer magazine and its predecessor,
PC Techniques.

Outstanding Component Producers. HREF
Tools Corp. (maker of the well-known
WebHub components) and Shoreline
Software (maker of Web Solution Builder)
are two vendors who produce Delphi Web
components. HREF’s site is large and very
well organized. While their educational
material is geared toward potential or exist-
ing WebHub customers, you can learn a
great deal about building a Web site here.
On the other hand, Shoreline’s site demon-
strates the creative use of multimedia with its
use of music and animation.

Speaking of multimedia, Skyline Tools is one
of the leaders in multimedia Delphi add-ons,
producing the award-winning ImageLib
components. Their site is attractively laid out
and easy to navigate. Nevrona Designs’ —
producer of three Delphi add-ons:
AdHocery, Propel, and the award-winning
chnical Free Online
apers components, support

services, and
add-ons

xcellent Excellent Very Good

ery Good None Very Good

ood Good Good

ery Good Excellent Good

ood Very Good Very Good

one None Good

ood None Excellent
ReportPrinter Pro — is another attractive
site. As with some of the Eagle Software
products, you can trace the development of
ReportPrinter Pro on their site. Be sure to
download their multimedia Propel demo and
some of the free features produced with
Propel. (Watch for my review of this product
in an upcoming issue.) It’s worth the visit.

Rating the Vendor Sites. How we rate
vendor sites depends on what we’re look-
ing for. If we’re most interested in product
information and customer support,
TurboPower is hard to beat. On the other
hand, if we’re looking for general pro-
gramming information or free compo-
nents, it’s a close contest between Eagle
Software and Raize Software Solutions. In
terms of innovation, HREF’s “portfolio”
of links to sites built with WebHub is a
strong marketing tool for that product.
And Nevrona has some refreshing pro-
gramming humor that I really enjoyed.
My summary of the sites’ features is given
in the table below. I recommend visiting
all of them. As I plan to return to this
theme again, please send me your favorite
Delphi sites at acmdoc@aol.com. ∆

— Alan C. Moore, Ph.D.
Delphi
links

Fair

Fair

Excellent

Excellent

Very Good

Good

None
Alan Moore is a Professor
of Music at Kentucky
State University, special-
izing in music composi-
tion and music theory. He
has been developing edu-
cation-related applica-
tions with the Borland
languages for more than
10 years. He has pub-
lished a number of arti-
cles in various technical
journals. Using Delphi,
he specializes in writing
custom components and
implementing multimedia
capabilities in applica-
tions, particularly sound
and music. You can reach
Alan via e-mail at
acmdoc@aol.com.

http://www.eaglesoftware.com
http://www.webhub.com
http://www.nevrona.com
http://www.raize.com
http://www.shoresoft.com
http://www.imagelib.com
http://www.turbopower.com

	Table of Contents
	Delphi Tools
	Xceed Releases Zip Compression Library and Self-Extractor Module
	Pythoness Releases PSetting
	SuperNova Releases SuperNova/Visual Concepts
	TurboPower Announces Async Professional 2.5
	Popkin Releases SA/Object Architect 4

	Delphi News
	Borland Appoints Zack Urlocker Vice President of Marketing
	Borland and Cayenne Software Announce Support for Delphi Client/Server Suite
	BSC Polska to Become Master Distributor of Borland Products in Portland
	Borland Ships Translation Tools for Delphi

	On the Cover
	From VB to Delphi
	The Client Side of File Notification
	Connecting to the Server
	Getting Events from the Server
	The Server Side of File Notification
	Into the Type Library Editor
	Implementation at Last
	Waiting for Events, but Where?
	Which Does Automation Best?

	Columns & Rows
	Delphi 3 VCL Enhancements
	Assigning IProvider
	Advantages of Using ClientDataset in 2-tier Applications
	Briefcase Model
	Lookup
	Indexing ClientDataset
	Cached Updates
	Deployment
	Conclusion

	Visual Programming
	Getting the Message
	Catching the Message
	Inherit the Form
	Form Inheritance in Delphi 1
	Form Inheritance in Delphi 2 and 3
	What’s Wrong Here?
	Conclusion

	DBNavigator
	What Is an Interface?
	Declaring an Interface
	Implementing Interfaces
	Interfaces and Method Resolution
	Conclusion
	Begin Listing One

	Algorithms
	Supersampling
	A Bit of Code
	An Artist’s Palette
	Conclusion

	Informant Spotlight
	Best Connectivity Tool
	Best Delphi Book
	Best VCL Component
	Best ActiveX
	Best Installation Software
	Best Training
	Best Reporting Tool
	Best Delphi Add-In
	Best Windows Help Authoring Tool
	Best Imaging Component
	Best Charting Component
	Best Database Tool
	Product of the Year
	Thank You All
	Contacting the Winners

	TextFile
	From the Trenches
	File I New

